• Title/Summary/Keyword: Mass-law

Search Result 495, Processing Time 0.028 seconds

Nonlinear interaction analysis of infilled frame-foundation beam-homogeneous soil system

  • Hora, M.S.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.267-289
    • /
    • 2014
  • A proper physical modeling of infilled building frame-foundation beam-soil mass interaction system is needed to predict more realistic and accurate structural behavior under static vertical loading. This is achieved via finite element method considering the superstructure, foundation and soil mass as a single integral compatible structural unit. The physical modelling is achieved via use of finite element method, which requires the use of variety of isoparametric elements with different degrees of freedom. The unbounded domain of the soil mass has been discretized with coupled finite-infinite elements to achieve computational economy. The nonlinearity of soil mass plays an important role in the redistribution of forces in the superstructure. The nonlinear behaviour of the soil mass is modeled using hyperbolic model. The incremental-iterative nonlinear solution algorithm has been adopted for carrying out the nonlinear elastic interaction analysis of a two-bay two-storey infilled building frame. The frame and the infill have been considered to behave in linear elastic manner, whereas the subsoil in nonlinear elastic manner. In this paper, the computational methodology adopted for nonlinear soil-structure interaction analysis of infilled frame-foundation-soil system has been presented.

THE ARCHES CLUSTER MASS FUNCTION

  • Kim, Sung-Soo S.;Figer, Donald F.;Kudritzki, Rolf P.;Naharro, F.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.153-155
    • /
    • 2007
  • We have analyzed H and $K_s$-band images of the Arches cluster obtained using the NIRC2 instrument on Keck with the laser guide star adaptive optics (LGS AO) system. With the help of the LGS AO system, we were able to obtain the deepest ever photometry for this cluster and its neighborhood, and derive the background-subtracted present-day mass function (PDMF) down to $1.3M_{\bigodot}$ for the 5"-9" annulus of the cluster. We find that the previously reported turnover at $6M_{\bigodot}$ is simply due to a local bump in the mass function (MF), and that the MF continues to increase down to our 50 % completeness limit ($1.3M_{\bigodot}$) with a power-law exponent of ${\Gamma}$ = -0.91 for the mass range of 1.3 < M/$M_{\bigodot}$ < 50. Our numerical calculations for the evolution of the Arches cluster show that the ${\Gamma}$ values for our annulus increase by 0.1-0.2 during the lifetime of the cluster, and thus suggest that the Arches cluster initially had ${\Gamma}$ of $-1.0{\sim}-1.1$, which is only slightly shallower than the Salpeter value.

Vibration control performance of particle tuned mass inerter system

  • Zheng Lu;Deyu Yan;Chaojie Zhou;Ruifu Zhang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.383-397
    • /
    • 2024
  • To improve the vibration control performance and applicability of traditional particle tuned mass damper (PTMD) and realize the significant characteristic of lightweight design, this study proposes a novel particle tuned mass inerter system (PTMIS) by introducing inerter system (IS) to the PTMD. In the study, the motion equation of single degree of freedom (SDOF) structure attached with PTMIS is established first, then the variation law of the system's vibration reduction performance (VRP) is discussed through parameter analysis, and it is compared with the PTMD to analyze its VRP advantages. Finally, its vibration reduction (VR) mechanism from the perspective of core control force and energy analysis is explored, and its cavity relative displacement from the application perspective is analyzed. The results show that the PTMIS can remarkably improve the vibration control effectiveness of the PTMD. The reason is that the inerter can store energy and transfer the energy to the cavity and particles, which further stimulates the interaction between the two parts, thereby improving the nonlinear energy consumption effectiveness. Also, the IS can amplify the damping element's energy dissipation efficiency. In addition, the PTMIS can effectively reduce the working stroke of the PTMD, and through the analysis of the lightweight characteristics of the PTMIS, it is found that its lightweight advantage can reach nearly 100%.

Application of rock mass index in the prediction of mine water inrush and grouting quantity

  • Zhao, Jinhai;Liu, Qi;Jiang, Changbao;Defeng, Wang
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.503-515
    • /
    • 2022
  • The permeability coefficient is an essential parameter for the study of seepage flow in fractured rock mass. This paper discusses the feasibility and application value of using readily available RQD (rock quality index) data to estimate mine water inflow and grouting quantity. Firstly, the influence of different fracture frequencies on permeability in a unit area was explored by combining numerical simulation and experiment, and the relationship between fracture frequencies and pressure and flow velocity at the monitoring point in fractured rock mass was obtained. Then, the stochastic function generation program was used to establish the flow analysis model in fractured rock mass to explore the relationship between flow velocity, pressure and analyze the universal law between fracture frequency and permeability. The concepts of fracture width and connectivity are introduced to modify the permeability calculation formula and grouting formula. Finally, based on the on-site grouting water control example, the rock mass quality index is used to estimate the mine water inflow and the grouting quantity. The results show that it is feasible to estimate the fracture frequency and then calculate the permeability coefficient by RQD. The relationship between fracture frequency and RQD is in accordance with exponential function, and the relationship between structure surface frequency and permeability is also in accordance with exponential function. The calculation results are in good agreement with the field monitoring results, which verifies the rationality of the calculation method. The relationship between the rock mass RQD index and the rock mass permeability established in this paper can be used to invert the mechanical parameters of the rock mass or to judge the permeability and safety of the rock mass by using the mechanical parameters of the rock mass, which is of great significance to the prediction of mine water inflow and the safety evaluation of water inrush disaster management.

Objective Aperture Effects for the Quantitative Analysis in Electron Tomography (전자토모그래피의 정량적 분석에서 대물렌즈 조리개의 영향)

  • Kim, Jin-Gyu;Lee, Sang-Hee;Kweon, Hee-Seok;Jeong, Jong-Man;Jeong, Won-Gu;Lee, Su-Jeong;Jou, Hyeong-Tae;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.38 no.4
    • /
    • pp.285-291
    • /
    • 2008
  • We have evaluated the effects of experimental factors on transmitted electron beam intensities for quantitative analysis in electron tomography. For the correct application of Beer's law in electron tomography, the transmitted beam intensity should reflect the net effect of mass properties on beam path. So, the any other effects of the objective aperture and the specimen holder on beam path should be removed. The cut-off effects of objective aperture were examined using Quanti-foil holey carbon film and a transmission electron microscope operated at 120 kV. The transmitted beam intensities with $30{\mu}m$ objective aperture dropped about 16.7% compared to electron beam intensities without the objective aperture. Also, the additional losses of about 14.2% at high tilt angles were occurred by cut-off effects of the objective apertures. For the precise quantitative analysis in electron tomography, the effect of the objective aperture on transmitted electron beam intensities should be considered. It is desirable that 2-D tilt series images are obtained without the objective aperture for correct application of Bee's law.

Comparison of Sound Transmission Loss of Panels Used in Ship Cabins for Field and Laboratory Measurements

  • Kim, Hyun-Sil;Kim, Jae-Seung;Kang, Hyun-Ju;Kim, Bong-Ki;Kim, Sang-Ryul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1E
    • /
    • pp.9-15
    • /
    • 2009
  • In this paper, FSTL (Field Sound Transmission Loss) measured in a mock-up simulating ship cabins is studied. A mock-up is built by using 6 mm steel plate, and two identical cabins are made where 25 mm or 50 mm sandwich panel is used to construct wall and ceiling inside the steel structure. Various wall panels and ceilings are tested, where effects of wall and ceiling panel thickness, and presence of a unit toilet on FSTL are investigated. It is found that the effect of unit toilet on FSTL is at most 1 dB. From the comparison of FSTL for panels of the same thickness of 50 mm, it is observed that panel having inside air cavity of 10 mm shows higher STL than that of the panel without air cavity. Comparison of FSTL for panels of 50 mm and 25 mm thickness shows that dependency on surface density predicted by mass law is not observed. The sandwich panels act as a mass-spring system, which shows a resonant mode that cannot be explained by the mass law. It is also found that STL from laboratory test is higher than FSTL by 5- 10 dB, which can be explained by flanking structure-borne noise transmission path such as ceiling, floor and corridor-facing wall.

A Study on fairness of broadcasting by AHP (AHP를 활용한 지상파 TV방송의 선거보도 공정성 연구)

  • Park, Seung-Jun;Kim, Dug-Mo
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.171-181
    • /
    • 2014
  • As the use of mass media in modern politics grows, its influential power is getting larger than before. Therefore, fairness of broadcasting is identified as a very important factor in the current law. In particular, whether the mass media has balanced attitude toward election issues has been a critical point, which maked the current law have separate provisons to deal with it. As for the fairness and bias, most existing studies had focused on how long the media dealt with the specific political issues, which leads to only quantitative analysis. Also, most analysis of the contents had been based on very personal judgement and evaluation of researchers rather than following the criteria which is based on scientific method. This study introduced the AHP analysis method to compare the quantitative data and qualitative data altogether, which aims to develope the indicator for weighted measures and measurement of the fairness. Research findings reveals that each broadcaster has, MBC was highly biased and KBS and SBS followed that. Compared with existing studies regarding the political fairness of the media.

First-Order Mass Transfer in a Diffusion-Dominated (Immobile) Zone of an Axisymmetric Pore: Semi-Analytic Solution and Its Limitations (대칭형 다공성 매질의 확산주도 영역에 관한 1차 물질이동 방정식)

  • Kim, Young-Woo;Kang, Ki-jun;Cho, Jung-ho;Kabala, Zbigniew
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4664-4670
    • /
    • 2010
  • Comparison of the classical mobile-immobile zone (MIM) model to the derived model led to several conclusions. If the MIM model is to be applied, the initial concentration in the immobile zone has to be down-scaled by a correction factor that is a function of pore geometry. The MIM model was valid only after sufficiently long time has passed, i.e., only after the diffusion front reaches the deepest pore wall in the immobile zone. The MIM mass-transfer coefficient $\alpha$, was inversely proportional to the square of the pore depth. Also it did not depend on the mobile-zone flow velocity, contrary to the number of laboratory and field observations. The classical MIM model displayed a rapid exponential decay of immobile-zone concentration. Meanwhile at large times, the newly derived model displayed similar exponential decay. This was contrary to the mounting evidence of power-law BTC tails observed in laboratory and field settings.

Effect of Cementite Precipitation on Carburizing Behavior of Vacuum Carburized AISI 4115 Steel (진공침탄에 의한 AISI 4115강의 침탄 거동에 미치는 세멘타이트 석출의 영향)

  • Gi-Hoon Kwon;Hyunjun Park;Yoon-Ho Son;Young-Kook Lee;Kyoungil Moon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.402-411
    • /
    • 2023
  • In order to examine the effect of cementite precipitated on the steel surface on the carburizing rate, the carburizing process was carried out at various boost times to measure the mass gain and carbon flux, phase analysis and carbon concentration analysis were performed on the surface of the carburized specimen. In the case of the only boost type, the longer the boost time, the more the mass gain by the diffused carbon follows the parabolic law and tends to increase. In particular, as the boost time increased, the depth of cementite precipitation and the average size of cementite on the steel surface increased. At a boost time of 7 min, the fraction of cementite precipitated on the surface is 7.32 vol.%, and the carburizing rate of carbon into the surface (surface-carbon flux) is about 17.4% compared to the calculated value because the area of the chemical (catalyst) where the carburization reaction takes place is reduced. The measured carbon concentration profile of the carburized specimen tended to be generally lower than the carbon concentration calculated by the model without considering precipitated cementite. On the other hand, in the pulse type, the mass gain by the diffused carbon increased according to the boost time following a linear law. At a boost time of 7 min, the fraction of cementite precipitated on the surface was 3.62 vol.%, and the surface-carbon flux decreased by about 4.1% compared to the calculated value. As a result, a model for predicting the actual carbon flux was presented by applying the carburization resistace coefficient derived from the surface cementite fraction as a variable.

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models : Verification Tests (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law : 검증실험)

  • Kim, Nam-Sik;Lee, Ji-Ho;Chang, Sung-Pil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.35-43
    • /
    • 2004
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. In this study, compressive strength tests are conducted to analyze the equivalent modulus ratio of micro-concrete to normal-concrete. Then, equivalent modulus ratios are divided into multi-phase damage levels, which are basically dependent on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test, considering equivalent multi-phase similitude law based on seismic damage levels, is developed. Test specimens, consisted of prototype structures and 1/5 scaled models as a reinforced concrete column, were designed and fabricated based on the equivalent modulus ratios already defined. Finally quasistatic and pseudodynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. It is confirmed that the equivalent multi-phase similitude law proposed in this study could be suitable for seismic performance tests on small-scale models.