• 제목/요약/키워드: Mass-Spring

검색결과 910건 처리시간 0.03초

Leipholz 기둥의 안정성에 미치는 자유단의 탄성구속과 말단질량의 영향 (Influence of Elastic Restraint and Tip Mass at Free End on Stability of Leipholz's Column)

  • 윤한익;박일주;김영수
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.91-97
    • /
    • 1997
  • An analysis is presented on the stability of an elastic cantilever column having the elastic restraints at its free end, carrying an added tip mass, and subjected to uniformly distributed follower forces. The elastic restraints are formed by both a translational spring and a rotatory spring. For this purpose, the governing equations and boundary conditions are derived by using Hamilton's principle, and the critical flutter loads and frequencies are obtained from the numerical evaluation of the eigenvalue functions of this elastic system. The added tip mass increases as a whole the critical flutter load of the elastic cantilever column, but the presence of its moment of inertia of mass has a destabilizing effect. The existence of the translational and rotatory springs at the free end increases the critical flutter load of the elastic cantilever column. Nevertheless, their effects on the critical flutter load are not uniform because of their coupling. The translational spring restraining the free end of the cantilever column decreases the critical flutter load by coupling with a large value of tip mass, while by coupling with the moment of inertia of tip pass its effect on the critical flutter load is contrary. The rotatory spring restraining the free end of the cantilever column increases the critical flutter load by coupling with the tip mass, but decreases it by coupling with the moment of inertia of the tip mass.

  • PDF

Identification of beam crack using the dynamic response of a moving spring-mass unit

  • An, Ning;Xia, He;Zhan, Jiawang
    • Interaction and multiscale mechanics
    • /
    • 제3권4호
    • /
    • pp.321-331
    • /
    • 2010
  • A new technique is proposed for bridge structural damage detection based on spatial wavelet analysis of the time history obtained from vehicle body moving over the bridge, which is different from traditional detection techniques based on the bridge response. A simply-supported Bernoulli-Euler beam subjected to a moving spring-mass unit is established, with the crack in the beam simulated by modeling the cracked section as a rotational spring connecting two undamaged beam segments, and the equations of motion for the system is derived. By using the transfer matrix method, the natural frequencies and mode shapes of the cracked beam are determined. The responses of the beam and the moving spring-mass unit are obtained by modal decomposition theory. The continuous wavelet transform is calculated on the displacement time histories of the sprung-mass. The case study result shows that the damage location can be accurately determined and the method is effective.

Effect of temperature and spring-mass systems on modal properties of Timoshenko concrete beam

  • Liu, Hanbing;Wang, Hua;Tan, Guojin;Wang, Wensheng;Liu, Ziyu
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.389-400
    • /
    • 2018
  • An exact solution for the title problem was obtained in closed-form fashion considering general boundary conditions. The expressions of moment, shear and shear coefficient (or shear factor) of cross section under the effect of arbitrary temperature distribution were first derived. In view of these relationships, the differential equations of Timoshenko beam under the effect of temperature were obtained and solved. Second, the characteristic equations of Timoshenko beam carrying several spring-mass systems under the effect of temperature were derived based on the continuity and force equilibrium conditions at attaching points. Then, the correctness of proposed method was demonstrated by a Timoshenko laboratory beam and several finite element models. Finally, the influence law of different temperature distribution modes and parameters of spring-mass system on the modal characteristics of Timoshenko beam had been studied, respectively.

끝단 질량과 일반적인 단부조건을 갖는 변단면 보의 자유진동 (Free Vibrations of Tapered Beams with General Boundary Conditions and Tip Masses)

  • 오상진;이병구;박광규;이종국
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.802-807
    • /
    • 2003
  • The purpose of this paper is to investigate the free vibration characteristics of tapered beams with translational and rotational springs and tip masses at the ends. The beam model is based on the classical Bernoulli-Euler beam theory. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest three natural frequencies are calculated over a wide range of non-dimensional system parameters: the translational spring parameter, the rotational spring parameter, the mass ratio and the dimensionless mass moment of inertia.

  • PDF

접촉 강성을 고려헌 차량-레일계의 연성 진동 해석 (A Couple Vibration Analysis of Railway Track System with Consideration of Contact Stiffness)

  • 류윤선;조희복;김사수
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.953-958
    • /
    • 1997
  • Corrugation of railway track can be caused by the various dynamic behaviors of traveling wheels and track. In this paper, the coupled vibrations of traveling wheel and railway track are analyzed as the cause of corrugations. To analyze the coupled vibration, the track supported by the sleepers and the traveling wheels are identified to the elastically supported infinite beam and the spring-mass system which runs at constant speed. The Hertzian contact spring is considered between the infinite beam and spring-mass system are calculated. The cause and development of rail corrugation are discussed in the view point of contact force fluctuation affected by the elastic supports and the corrugated surface profile on the track. By the obtained results, the possibilities of resonance are checked between the excitation by the corrugated surface profile and the natural frequency of contact spring-mass system. It may be thought to a development of railway corrugation.

  • PDF

교량 무선센서 전원공급용 전자기를 이용한 광대역 에너지 하베스트의 진동시스템에 관한 연구 (The research of energy harvester's the wideband vibration system from bridge for wireless sensor applications)

  • 한기봉;신동찬;김영철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.819-824
    • /
    • 2012
  • This paper presents the wideband vibration system of an electromagnetic vibration energy harvester that obtained electric power for wireless sensor applications from the ever-change vibrations of bridge. It is a system with two degree of freedom vibrations that are composed of two mass and two spring respectively. One system is housing mass and spring, the other is the magnetic mass and spring that is the vibration system construction's element of electromagnetic vibration energy harvester. In other words, it is called dynamic vibration absorber. This paper show that the ratio of housing mass to magnetic mass decides the bandwidth and the size of amplitude of magnetic mass in electromagnetic vibration energy harvester. Therefore, it is necessary to improve the efficiency of energy in electromagnetic vibration energy harvester for wireless sensor applications.

  • PDF

수직 흡수전열관의 흡수성능에 미치는 스프링의 영향 (Influence of Spring on The Absorption Performance of a Vertical Absorber Tube)

  • 김정국;조금남
    • 설비공학논문집
    • /
    • 제14권10호
    • /
    • pp.825-832
    • /
    • 2002
  • The present study investigated the enhancement of the absorption performance by the spring wrapped around the outer surface of the vertical falling film absorber tube. Heat and mass transfer enhancements were experimentally investigated, and flow visualization was performed to observe the wettability and flow pattern of the solution. The key experimental parameters were spring diameter (0.5, 1.0 mm) and spring pitch (1, 3, 10 mm), film Reynolds number (50~150), and concentration of LiBr-$H_2O$ solution (55, 60, 65 wt%). As the spring diameter was increased, the absorption mass flux, Sherwood number, Nusselt number, heat flux, and heat transfer coefficient were increased The Nusselt and Sherwood numbers showed the maximum at the spring pitch of 3mm, and the ratio of pitch to diameter of approximately 3 and 6 for the spring diamter of 0.5 mm, respectively.

압축하중을 받는 단순 코일 스프링에 관한 해석 결과 및 분석

  • 윤종선;이남주
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.263-265
    • /
    • 2015
  • In this paper, a coil spring of the suspension components of the car is calculated through FEM(Finite Element Method) when a portion of the one is applied by an external load. we analyze the situation by using 'Large Deformation Analysis SW' in the EDISON structural dynamics server. Results of the analysis are about a displacement of the upper spring after deformation and total mass, and we use them to calculate the spring constant and maximum von-Mises stress by using Hooke's law and von-Mises stress equation. Finally, we visualize the relationship between the calculated spring constant and the mass through graphs and this data are beneficial for industries related to the spring.

  • PDF

진동해머의 진동특성에 대한 해석적 연구 (Analytical Study on Vibrational Properties of Vibro-hammer)

  • 이승현;김응석;윤기용
    • 한국산학기술학회논문지
    • /
    • 제14권7호
    • /
    • pp.3577-3581
    • /
    • 2013
  • 진동해머에 의해 시공되는 말뚝의 해석을 위해서는 진동해머의 진동특성을 파악함이 우선되어야 한다. 진동해머의 진동특성을 살펴보고자 해석적 연구를 수행하였다. 진동시스템에 대한 지배방정식 구성에 있어서는 진동기만의 질량에 의해 발생하는 스프링작용력을 말뚝에 작용시키는 개념보다는 기진기와 말뚝이 연결된 단일 질량체를 고려하여 지배방정식을 구성하는 것이 타당할 것으로 판단된다. 공운전시 스프링상수가 증가함에 따라 진폭의 변화량은 크지 않았으나 스프링작용력은 대체로 스프링상수에 비례하여 증가하였다. 공운전시 기진기질량이 증가함에 따라 진폭은 대체로 반비례관계를 보였으며 스프링작용력은 진폭의 변화율과 일치함을 알 수 있다. 스프링작용력과 변위의 방향은 회전운동 중인 편심질량이 가리키는 방향과 반대가 됨을 알 수 있었다.

집중 질량-스프링 모델을 이용한 볼트 결합부 모델링 (Dynamic Modeling of Bolt Joints Using Lumped Mass-Spring Model)

  • 고강호;이장무
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.495-501
    • /
    • 2001
  • In this paper, a new technique which models the joints characteristics through reduction of DOFs of structures with joints using component mode synthesis (CMS) method is proposed. Bolt joints are modeled by mass-spring systems. Also generalized mass and stiffness matrices for this models are introduced. Because bolt joints have influence on eigenvalues of structures, exact eigenvalues from modal test are used. The results show that the behaviors of structures with bolt joints depend to a large extent on the translational DOFs and not on rotational DOFs of mass and stiffness matrices of bolts. Furthermore it is confirmed that lumped mass-spring systems as models of bolt joints are effective models considering the facts that joint characteristics converged to constant values in some iterations and eignevalues from proposed method are in good agreement with ones from modal test.