• Title/Summary/Keyword: Mass transfer modeling

Search Result 148, Processing Time 0.025 seconds

Aerodynamic Approaches for the Predition of Spread the HPAI (High Pathogenic Avian Influenza) on Aerosol (고병원성 조류인플루엔자 (HPAI)의 에어로졸을 통한 공기 전파 예측을 위한 공기유동학적 확산 모델 연구)

  • Seo, Il-Hwan;Lee, In-Bok;Moon, Oun-Kyung;Hong, Se-Woon;Hwnag, Hyun-Seob;Bitog, J.P.;Kwon, Kyeong-Seok;Kim, Ki-Youn
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • HPAI (High pathogenic avian influenza) which is a disease legally designated as an epidemic generally shows rapid spread of disease resulting in high mortality rate as well as severe economic damages. Because Korea is contiguous with China and southeast Asia where HPAI have occurred frequently, there is a high risk for HPAI outbreak. A prompt treatment against epidemics is most important for prevention of disease spread. The spread of HPAI should be considered by both direct and indirect contact as well as various spread factors including airborne spread. There are high risk of rapid propagation of HPAI flowing through the air because of collective farms mostly in Korea. Field experiments for the mechanism of disease spread have limitations such as unstable weather condition and difficulties in maintaining experimental conditions. In this study, therefore, computational fluid dynamics which has been actively used for mass transfer modeling were adapted. Korea has complex terrains and many livestock farms are located in the mountain regions. GIS numerical map was used to estimate spreads of virus attached aerosol by means of designing three dimensional complicated geometry including farm location, road network, related facilities. This can be used as back data in order to take preventive measures against HPAI occurrence and spread.

Comprehensive Consideration on the Discharge of Gases from Pressurized Vessels through Pressure Relief Devices (압력용기로부터 압력방출장치를 통한 가스 방출에 관한 포괄적 고찰)

  • Chung, Chang-Bock
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.32-45
    • /
    • 2020
  • The problem of determining the discharge rates of gases from pressurized vessels through pressure relief devices was dealt with comprehensively. First, starting from basic fluid flow equations, detailed modeling procedures were presented for isentropic nozzle flows and frictional flows in a pipe, respectively. Meanwhile, physical explanations were given to choking phenomena in terms of the acoustic velocity, elucidating the widespread use of Mach numbers in gas flow models. Frictional flows in a pipe were classified into adiabatic, isothermal, and general flows according to the heat transfer situation around the pipe, but the adiabatic flow model was recommended suitable for gas discharge through pressure relief devices. Next, for the isentropic nozzle flow followed by adiabatic frictional flow in the pipe, two equations were established for two unknowns that consist of the Mach numbers at the inlet and outlet of the pipe, respectively. The relationship among the ratio of downstream reservoir pressure to upstream pressure, mass flux, and total frictional loss coefficient was shown in various forms of MATLAB 2-D plot, 3-D surface plot and contour plot. Then, the profiles of gas properties and velocity in the pipe section were traced. A method to quantify the relationship among the pressure head, velocity head, and total friction loss was presented, and was used in inferring that the rapid increase in gas velocity in the region approaching the choked flow at the pipe outlet is attributed to the conversion of internal energy to kinetic energy. Finally, the Levenspiel chart reproduced in this work was compared with the Lapple chart used in API 521 Standatd.

A three-region movable-boundary helical coil once-through steam generator model for dynamic simulation and controller design

  • Shifa Wu;Zehua Li;Pengfei Wang;G.H. Su;Jiashuang Wan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.460-474
    • /
    • 2023
  • A simple but accurate mathematical model is crucial for dynamic simulations and controller design of helical coil once-through steam generator (OTSG). This paper presents a three-region movable boundary dynamic model of the helical coil OTSG. Based on the secondary side fluid conditions, the OTSG is divided into subcooled region (two control volumes), two-phase region (two control volumes) and superheated region (three control volumes) with movable boiling boundaries between each region. The nonlinear dynamic model is derived based on mass, energy and momentum conservation equations. And the linear model is obtained by using the transfer function and state space transformation, which is a 37-order model of five input and three output. Validations are made under full-power steady-state condition and four transient conditions. Results show good agreements among the nonlinear model, linear model and the RELAP5 model, with acceptable errors. This model can be applied to dynamic simulations and controller design of helical coil OTSG with constant primary-side flow rate.

Evaluation of Efficiency of SVE from Lab-scale Model Tests and Numerical Analysis (실내모형시험과 수치해석을 통한 SVE의 효율성 평가)

  • Suk, Heejun;Seo, Min Woo;Ko, Kyung-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.137-147
    • /
    • 2008
  • Soil Vapor Extraction (SVE) has been extensively used to remove volatile organic compounds (VOCs) from the vadoze zone. In order to investigate the removal mechanism during SVE operation, laboratory modeling experiments were carried out and tailing effect could be observed in later stage of the experiment. Tailing effect means that removal rate of contaminants gets significantly to decrease in later stage of SVE operation. Also, mathematical model simulating the tailing effect was used, which considers rate-limited diffusion in a water film during mass transfer among gas, liquid, and solid phases. Measurement data obtained through the experiment was used as input data of the numerical analyses. Sensitivity analysis was performed to examine the effect of each parameter on required time to reach final target concentration. Finally, it was found that the concentration in the soil phase decreased significantly with a liquid and gas diffusion coefficient larger, actual path length shorter, and water saturation smaller.

A CFD Modeling of Heat Generation and Charge-Discharge Behavior of a Li-ion Secondary Battery (Li-ion 이차전지의 충방전 시 발열 및 충방전 특성의 CFD 모델링)

  • Kang, Hyeji;Park, Hongbeom;Han, Kyoungho;Yoon, Do Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.114-121
    • /
    • 2016
  • This study investigates a CFD modeling of the charge-discharge behavior due to heat generation during charge-discharge cycles of a Li-ion secondary battery(LIB). Present LIB system adopted a current-density equation, heat and mass transfer governing equations upon the 1-dimensional system to the thickness direction for the rectangular pouch configuration. According to the 3-kinds of the charge-discharge current densities of 1C($17.5A/m^2$), 3C($52.5A/m^2$) and 5C($87.5A/m^2$) subject to a 3 V of cut-off voltage, a constant-temperature system at 298 K and three different heat generating systems were analyzed with comparison. Battery capacity decreases with increment of charge-discharge densities not only at the constant-temperature system but also at the heat-generating system. The time for charge-discharge cycles increases at the heat-generating system compare to the constant-temperature system. These trends are considered that the increase of temperature due to heat generation causes the decrement of equilibrium potential of electrodes and the increment of diffusivity of Li ions. Furthermore, cooling effects were discussed in order to control the influence of heat generation due to charge-discharge behavior of a Li-ion secondary battery.

Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-Tropsch Microchannel Reactor (전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기의 채널 구조 영향 분석)

  • Na, Jonggeol;Jung, Ikhwan;Kshetrimayum, Krishnadash S.;Park, Seongho;Park, Chansaem;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.826-833
    • /
    • 2014
  • Driven by both environmental and economic reasons, the development of small to medium scale GTL(gas-to-liquid) process for offshore applications and for utilizing other stranded or associated gas has recently been studied increasingly. Microchannel GTL reactors have been prefrered over the conventional GTL reactors for such applications, due to its compactness, and additional advantages of small heat and mass transfer distance desired for high heat transfer performance and reactor conversion. In this work, multi-microchannel reactor was simulated by using commercial CFD code, ANSYS FLUENT, to study the geometric effect of the microchannels on the heat transfer phenomena. A heat generation curve was first calculated by modeling a Fischer-Tropsch reaction in a single-microchannel reactor model using Matlab-ASPEN integration platform. The calculated heat generation curve was implemented to the CFD model. Four design variables based on the microchannel geometry namely coolant channel width, coolant channel height, coolant channel to process channel distance, and coolant channel to coolant channel distance, were selected for calculating three dependent variables namely, heat flux, maximum temperature of coolant channel, and maximum temperature of process channel. The simulation results were visualized to understand the effects of the design variables on the dependent variables. Heat flux and maximum temperature of cooling channel and process channel were found to be increasing when coolant channel width and height were decreased. Coolant channel to process channel distance was found to have no effect on the heat transfer phenomena. Finally, total heat flux was found to be increasing and maximum coolant channel temperature to be decreasing when coolant channel to coolant channel distance was decreased. Using the qualitative trend revealed from the present study, an appropriate process channel and coolant channel geometry along with the distance between the adjacent channels can be recommended for a microchannel reactor that meet a desired reactor performance on heat transfer phenomena and hence reactor conversion of a Fischer-Tropsch microchannel reactor.

Fate Analysis and Impact Assessment for Vehicle Polycyclic Aromatic Hydrocarbons (PAHs) Emitted from Metropolitan City Using Multimedia Fugacity Model (다매체거동모델을 이용한 대도시 자동차 배출 Polycyclic Aromatic Hydrocarbons (PAHs) 거동 해석 및 영향평가)

  • Rhee, Gahee;Hwangbo, Soonho;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.479-495
    • /
    • 2018
  • This study was carried out to research the multimedia fate modeling, concentration distribution and impact assessment of polycyclic aromatic hydrocarbons (PAHs) emitted from automobiles, which are known as carcinogenic and mutation chemicals. The amount of emissions of PAHs was determined based on the census data of automobiles at a target S-city and emission factors of PAHs, where multimedia fugacity modeling was conducted by the restriction of PAHs transfer between air-soil at the impervious area. PAHs' Concentrations and their distributions at several environmental media were predicted by multimedia fugacity model (level III). The residual amounts and the distributions of PAHs through mass transfer of PAHs between environment media were used to assess the health risk of PAHs at unsteady state (level IV), where the sensitivity analyses of the model parameter of each variable were conducted based on Monte Carlo simulation. The experimental result at S-city showed that Fluoranthene among PAHs substances are the highest residual concentrations (60%, 53%, 32% and 34%) at all mediums (atmospheric, water, soil, sediment), respectively, where most of the PAHs were highly accumulated in the sediment media (more than 80%). A result of PAHs concentration changes in S-city over the past 34 years identified that PAHs emissions from all environmental media increased from 1983 to 2005 and decreased until 2016, where the emission of heavy-duty vehicle including truck revealed the largest contribution to the automotive emissions of PAHs at all environment media. The PAHs concentrations in soil and water for the last 34 years showed the less value than the legal standards of PAHs, but the PAHs in air exceeded the air quality standards from 1996 to 2016. The result of this study is expected to contribute the effective management and monitoring of toxic chemicals of PAHs at various environment media of Metropolitan city.

Modeling on the Sorption Kinetics of Lead and Cadmium onto Natural Sediments (퇴적물에서의 납과 카드뮴의 흡착 동력학 모델링)

  • Kwak, Mun-Yong;Ko, Seok-Oh;Park, Jae-Woo;Jeong, Yeon-Gu;Shin, Won-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.450-461
    • /
    • 2006
  • In this study, sorption kinetics of lead (Pb) and cadmium (Cd) onto coastal sediments were investigated at pH 5.5 using laboratory batch adsorbers. Four different models: one-site mass transfer model (OSMTM), pseudo-first-order kinetic model (PFOKM) ,pseudo-second-order kinetic model (PSOKM) and two compartment first-order kinetic model (TCFOKM) were used to analyze the sorption kinetics. As expected from the number of model parameters involved, the three-parameter TCFOKM was better than the two-parameter OSMTM, PFOKM and PSOKM in describing sorption kinetics of Pb and Cd onto sediments. Most sorption of Pb and Cd was rapidly completed within the first three hours, followed by slow sorption in the subsequent period of sorption. All models predicted that the sorbed amount at the apparent sorption ($q_{e,s}$) equilibria increased as the CEC and surface area of the sediments increased, regardless of initial spiking concentration ($C_0$) and heavy metal and the sediment type. The sorption rate constant ($k_s,\;hr^{-1}$) in OSMTM also increased as the CEC and BET surface area increased. The rate constant of pseudo-first-order sorption ($k_{p1,s},\;hr^{-1}$) in PFOKM were not correlated with sediment characteristics. The results of PSOKM analysis showed that the rate constant of pseudo-second-order sorption ($k_{p2,s},\;g\;mmol^{-1}\;hr^{-1}$) and the initial sorption rate ($v_{o,s},\;mg\;g^{-1}\;hr^{-1}$) were not correlated with sediment characteristics. The fast sorption fraction ($f_{1,s}$) in TCFOKM increased as CEC and BET surface increased regardless of initial aqueous phase concentrations. The sorption rate constant of fast fraction ($k_{1,s}=10^{0.1}-10^{1.0}\;hr^{-1}$) was much greater than that of slow sorption fraction ($k_{2,s}=10^{-2}-10^{-4}\;hr^{-1}$) respectively.

Treatment of AP Solutions Extracted from Solid Propellant by NF/RO Membrane Process (NF/RO 멤브레인 공정을 적용한 고체추진제에서 추출된 암모늄 퍼클로레이트 (AP) 처리 연구)

  • Kong, Choongsik;Heo, Jiyong;Yoon, Yeomin;Han, Jonghun;Her, Namguk
    • Membrane Journal
    • /
    • v.22 no.4
    • /
    • pp.235-242
    • /
    • 2012
  • Ammonium perchlorate (AP) is primarily derived from the process of liquid incineration treatment when dismantling a solid rocket propellant. A series of batch dead-end nanofiltration (NF) and reverse osmosis (RO) membrane experiments were conducted to explore the retention mechanisms of AP under various hydrodynamic and solution conditions. Low levels of silicate type of siloxane had been detected through the GC/MS and FTIR analysis of liquid solutions extracted from solid ammonium perchlorate composite propellant (APCP). It is indicated that NF/RO membranes fouling in the presence of APCP was mainly attributed to the AP interactions because the concentration of silicate type of siloxane was negligible compared to that of AP. The osmotic pressure of AP was presumably resulted in the flux declines ranging from 13 to 17% in the case of the application of low-pressure (551 and 896 kPa for NF and RO) compared to those in application of high-pressure. The retention of AP by NF/RO membranes significantly varied from approximately 10 to 70% for NF and 26 to 87% for RO, depending on the operating and solution water chemistry conditions. The results suggested that retention efficiency of AP was fairly increased by reducing concentration polarization (i.e. application of low-pressure and stirring speed of 600 rpm) and increasing the pH of a solution. The result of this study was also consistent with the previous modeling of 'solute mass transfer of NF/RO membranes' and demonstrated that hydrodynamic and solution water chemistry conditions are to be a key factor in the retention of AP by NF/RO membranes.

Dynamic modeling of LD converter processes

  • Yun, Sang Yeop;Jung, Ho Chul;Lee, In-Beum;Chang, Kun Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1639-1645
    • /
    • 1991
  • Because of the important role LD converters play in the production of high quality steel, various dynamic models have been attempted in the past by many researchers not only to understand the complex chemical reactions that take place in the converter process but also to assist the converter operation itself using computers. And yet no single dynamic model was found to be completely satisfactory because of the complexity involved with the process. The process indeed involves dynamic energy and mass balances at high temperatures accompanied by complex chemical reactions and transport phenomena in the molten state. In the present study, a mathematical model describing the dynamic behavior of LD converter process has been developed. The dynamic model describes the time behavior of the temperature and the concentrations of chemical species in the hot metal bath and slag. The analysis was greatly facilitated by dividing the entire process into three zones according to the physical boundaries and reaction mechanisms. These three zones were hot metal (zone 1), slag (zone 2) and emulsion (zone 3) zones. The removal rate of Si, C, Mn and P and the rate of Fe oxidation in the hot metal bath, and the change of composition in the slag were obtained as functions of time, operating conditions and kinetic parameters. The temperature behavior in the metal bath and the slag was also obtained by considering the heat transfer between the mixing and the slag zones and the heat generated from chemical reactions involving oxygen blowing. To identify the unknown parameters in the equations and simulate the dynamic model, Hooke and Jeeves parttern search and Runge-Kutta integration algorithm were used. By testing and fitting the model with the data obtained from the operation of POSCO #2 steelmaking plant, the dynamic model was able to predict the characteristics of the main components in the LD converter. It was possible to predict the optimum CO gas recovery by computer simulation

  • PDF