• Title/Summary/Keyword: Mass size distributions

Search Result 97, Processing Time 0.027 seconds

Size Distribution of Ambient Aerosol Measured at a Coastal Site in Jeju Island (제주도 해안가에서 측정된 에어로졸의 성분별 입경분포 특성)

  • 이기호;양희준;허철구
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1043-1054
    • /
    • 2003
  • During the period from April to September 2002, the size distributions of ambient aerosol were measured at the coastal site at Hamduk in Jeju Island. Na$\^$+/, K$\^$+/, Mg$\^$2+/, Ca$\^$2+/and Cl$\^$-/ exhibited mostly a bimodal coarse mode size distribution, while ammonium and sulfate were mainly in the fine size range, with maximum at around 0.54$\mu\textrm{m}$. The average molar concentration ratio of ammonium to sulfate for fine particles was equal to 2.0${\pm}$0.9. Nitrate was evenly found in both the coarse and fine modes. Elements like Al, Fe, Cu, Mg, Na, Ti, Sr and Mn were dominant in coarse particles, with the maximum at around 5.25$\mu\textrm{m}$. S and Pb were mainly in the submicrometer size range. Other elements with a fine and coarse modes were V, Ni, Cu, Ba and Mo. The patterns of the size distributions of trace elements measured at the downtown in Jeju City were very similar to those at the coastal site in Hamduk. However, the amplitude of size fractional concentrations at Jeju City was narrower than that at Hamduk. While the mass median diameters for the chemical species originated from the natural origin such as marine and crust were relatively large, those for ammonium, sulfate, S and Pb were very small.

Characteristic of Size-Resolved Water-Soluble Organic Carbon in Atmospheric Aerosol Particles Observed during Daytime and Nighttime in an Urban Area (도시지역 낮.밤 대기에어로졸의 입경 별 수용성 유기탄소의 특성)

  • Park, Seung Shik;Shin, Dong Myung
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.7-21
    • /
    • 2013
  • Twelve-hour size-resolved atmospheric aerosols were measured to determine size distributions of water-soluble organic carbon(WSOC) during daytime and nighttime, and to investigate sources and formation pathways of WSOC in individual particle size classes. Mass, WSOC, ${NO_3}^-$, $K^+$, and $Cl^-$ at day and night showed mostly bimodal size distributions, peaking at the size range of $0.32-0.55{\mu}m$(condensation mode) and $3.1-6.2{\mu}m$(coarse mode), respectively, with a predominant condensation mode and a minor coarse mode. While ${NH_4}^+$ and ${SO_4}^{2-}$ showed unimodal size distributions which peaked between 0.32 and $0.55{\mu}m$. WSOC was enriched into nuclei mode particles(< $0.1{\mu}m$) based on the WSOC-to-mass and WSOC-to-water soluble species ratios. The sources and formation mechanisms of WSOC were inferred in reference to the size distribution characteristics of inorganic species(${SO_4}^{2-}$, ${NO_3}^-$, $K^+$, $Ca^{2+}$, $Na^+$, and $Cl^-$) and carbon monoxide. Nuclei mode WSOC was likely associated with primary combustion sources during daytime and nighttime. Among significant sources contributing to the condensation mode WSOC were homogeneous gas-phase oxidation of VOCs, primary combustion emissions, and fresh(or slightly aged) biomass burning aerosols. The droplet mode WSOC could be attributed to aqueous oxidation of VOCs in clouds, cloud-processed biomass burning aerosols, and small contributions from primary combustion sources. From the correlations between WSOC and soil-related particles, and between WSOC and sea-salt particles, it is suggested that the coarse mode WSOC during daytime is likely to condense on the soil-related particles($K^+$ and $Ca^{2+}$), while the WSOC in the coarse fraction during nighttime is likely associated with the sea-salt particles($Na^+$).

Aerosol Size Distributions and Optical Properties during Severe Asian Dust Episodes Measured over South Korea in Spring of 2009-2010 (2009-2010년 봄철 심한 황사 사례에 대한 에어러솔 크기 분포와 광학적 특성)

  • Kang, Dong-Hun;Kim, Jiyoung;Kim, Kyung-Eak;Lim, Byung-Sook
    • Atmosphere
    • /
    • v.22 no.3
    • /
    • pp.367-379
    • /
    • 2012
  • Measurements of $PM_{10}$ mass concentration, aerosol light scattering and absorption coefficients as well as aerosol size distribution were made to characterize the aerosol physical and optical properties at the two Korean WMO/GAW regional stations, Anmyeondo and Gosan. Episodic cases of the severe Asian dust events occurred in spring of 2009-2010 were studied. Results in this study show that the aerosol size distributions and optical properties at both stations are closely associated with the dust source regions and the transport routes. According to the comparison of the $PM_{10}$ mass concentration at both stations, the aerosol concentrations at Anmyeondo are not always higher than those at Gosan although the distance from the dust source region to Anmyeondo is closer than that of Gosan. The result shows that the aerosol concentrations depend on the transport routes of the dust-containing airmass. The range of mass scattering efficiencies at Anmyeon and Gosan was 0.50~1.45 and $0.62{\sim}1.51m^2g^{-1}$, respectively. The mass scattering efficiencies are comparable to those of the previous studies by Clarke et al. (2004) and Lee (2009). It is noted that anthropogenic fine particles scatter more effectively the sunlight than coarse dust particles. Finally, we found that the aerosol size distribution and optical properties at Anmyeondo and Gosan show somewhat different properties although the samples for the same dust_episodic events are compared.

A Study on the Characterization of Size Distributions and Atmospheric Dry Deposition of Heavy Metals (대기중 중금속 입자의 입경분포 및 건식침적 특성에 관한 연구)

  • Yi, Seung-Muk;Lee, Eun-Young;Cheong, Jang-Pyo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.575-585
    • /
    • 2000
  • Mass and elemental dry deposition fluxes and ambient particle size distributions were measured using dry deposition plates, a cascade impactor. and a CPS(Coarse Particle Sampler), from July to November 1998 in Seoul. Korea. Primarily anthropogenic elemental fluxes (Cu, Mn, Ni, Pb, Zn) were on average one to two orders of magnitude lower than primarily crustal elements (Al, Ca). Complete total and elemental particle size distributions showed trimodal size distributions due to the peak in particles larger than $10{\mu}m$ in diameter. A multi-step model and the Sehmel-Hodgson model were used to calculate total and cumulative deposition fluxes. The result indicated that dry deposition fluxes were extremely sensitive to the mass of particles larger than $10{\mu}m$ in diameter due to their high dry deposition velocities. The result showed that particles larger than $10{\mu}m$ in diameter dominated atmospheric dry deposition. The modeled fluxes calculated using the measured atmospheric particle size distributions and modeled deposition velocities were compared to measured ones. In general, the measured mass and elemental fluxes agreed well with the modeled ones.

  • PDF

Elemental components analysis according to the size of fine particles emitted from a coal-fired power plant using an ejector-porous tube dilution sampling and ELPI (이젝터-다공튜브 희석 샘플링과 ELPI를 이용한 석탄화력발전소 배출 미세먼지의 입자 크기에 따른 성분 분석)

  • Shin, Dongho;Park, Daehoon;Joe, Yunhui;Kim, Younghun;Hong, Kee-Jung;Lee, Gunhee;Han, Bangwoo;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.18 no.3
    • /
    • pp.69-77
    • /
    • 2022
  • In order to understand the characteristics of fine particles emitted from coal-fired power plant stacks, it is important to analyze the size distribution and components of particles. In this study, particle size distributions were measured using the ejector-porous tube dilution device and an ELPI system at a stack in a coal-fired power plant. Main elemental components of particles in each size interval were also identified through TEM-EDS analysis for the particles collected in each ELPI stage. Particle size distributions based on number and mass were analyzed with component distributions from 0.006 to 10 ㎛. The highest number concentration was about 0.01 ㎛. The main component of the particles consisted of sulfur, which indicated that sulfate aerosols were generated by gas-to-particle conversion of SO2. In a mass size distribution, a mono-modal distribution with a mode diameter of about 2 ㎛ was shown. For the components of PM1.0 (particles less than 1 ㎛), the abundance order was F > Mg > S > Ca, and however, for the components of PM10 (particles less than 10 ㎛), it was in the order of Fe > S > Ca > Mg. The elemental components by particle size were confirmed.

Analysis of Aerosol Dynamics, Heat and Mass Transfer in the Modified Chemical Vapor Deposition (수정된 화학증착공정에서 에어로졸 역학, 열전달 및 물질전달 해석)

  • Park, Kyong Soon;Lee, Bang Weon;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.262-271
    • /
    • 1999
  • A study of aerosol dynamics has been done to obtain axially and radially varying size distributions of particles generated in the Modified Chemical Vapor Deposition process. Heat and mass transfer have also been studied since particle generation and deposition strongly depend on the temperature field in a tube. Bimodal size distributions of particles have been obtained both in the particulate flow and in the deposited particle layer for the first time using the sectional method to solve aerosol dynamics. Variations of geometric mean diameter, geometric standard deviation have been studied for various parameters; flow rates and maximum wall temperature. The comparison between one-dimensional and two-dimensional approaches has also been made.

Characterization of Total and Size-Fractionated Manganese Exposure by Work Area in a Shipbuilding Yard

  • Jeong, Jee Yeon;Park, Jong Su;Kim, Pan Gyi
    • Safety and Health at Work
    • /
    • v.7 no.2
    • /
    • pp.150-155
    • /
    • 2016
  • Background: Shipbuilding involves intensive welding activities, and welders are exposed to a variety of metal fumes, including manganese, that may be associated with neurological impairments. This study aimed to characterize total and size-fractionated manganese exposure resulting from welding operations in shipbuilding work areas. Methods: In this study, we characterized manganese-containing particulates with an emphasis on total mass (n = 86, closed-face 37-mm cassette samplers) and particle size-selective mass concentrations (n = 86, 8-stage cascade impactor samplers), particle size distributions, and a comparison of exposure levels determined using personal cassette and impactor samplers. Results: Our results suggest that 67.4% of all samples were above the current American Conference of Governmental Industrial Hygienists manganese threshold limit value of $100{\mu}g/m^3$ as inhalable mass. Furthermore, most of the particles containing manganese in the welding process were of the size of respirable particulates, and 90.7% of all samples exceeded the American Conference of Governmental Industrial Hygienists threshold limit value of $20{\mu}g/m^3$ for respirable manganese. Conclusion: The concentrations measured with the two sampler types (cassette: total mass; impactor: inhalable mass) were significantly correlated (r = 0.964, p < 0.001), but the total concentration obtained using cassette samplers was lower than the inhalable concentration of impactor samplers.

Characteristics According to the Size Distributions of Respirable Particulate During Yellow Sand Episode in Kosan, Jeju Island (황사기간도안 제주, 고산지역에서 호흡성 분진의 입자 분포 특성)

  • Kim, Jeong-Ho;Ahn, Jun-Young;Han, Jin-Seok;Lee, Jeong-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.91-96
    • /
    • 2003
  • This study was intended as an investigation of characteristics of background site atmospheric respirable particulate matters(RPM), and fine particles(<2.5 ${\mu}{\textrm}{m}$). The particle size distributions during the phenomenon of Yellow Sand(YS) occurs from April, 2001. Atmospheric aerosol particulate matter was directly collected on the Jeju island between 1 to 30, April, 2001 using an eight-stage cascade impacter(particle size range: 0.43-11 ${\mu}{\textrm}{m}$), and cyclone separator(cut size: 2.5, 10 ${\mu}{\textrm}{m}$). The episode of YS observed in background monitoring site, Kosan and appeared 2 times at sampling period. The mass concentrations of fine and coarse particles for YS episode were 34.2 and 59.6 $\mu\textrm{g}$/㎥, respectively, which were significantly increased amounts compared to 13.3 and 13.0 $\mu\textrm{g}$/㎥ for NonYS(NYS). Most size distributions had two peaks, one at 0.43∼.65 ${\mu}{\textrm}{m}$ and the other at 3.3${\mu}{\textrm}{m}$4.7 ${\mu}{\textrm}{m}$. The result of analysis of water-soluble ion component indicated that sulfate was mainly ion component, but nitrate and calcium ion was significantly increased at the YS episode.

An Analysis of Generation and Growth of Multicomponent Particles in the Modified Chemical Vapor Deposition (수정된 화학증착공정에서 다종 성분 입자 생성 및 성장 해석)

  • Lee, Bang Weon;Park, Kyong Soon;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.670-677
    • /
    • 1999
  • An analysis of generation and growth of multicomponent particles has been carried out to predict the size and composition distributions of particles generated in the Modified Chemical Vapor Deposition(MCVD) process. In MCVD process. scale-up of sintering and micro-control of refractive index may need the Information about the size and composition distributions of $SiO_2-GeO_2$ particles that are generated and deposited. The present work solved coupled steady equations (axi-symmetric two dimensions) for mass conservation, momentum balance. energy and species(such as $SiCl_4$, $GeCl_4$, $O_2$, $Cl_2$) conservations describing fluid flow. heat and mass transfer in a tube. Sectional method has been applied to obtain multi-modal distributions of multicomponent aerosols which vary in both radial and axial directions. Chemical reactions of $SiCl_4$ and $GeCl_4$ were included and the effects of variable properties have also been considered.

Composition of Size-Segregated Atmospheric Aerosol Collected at an Urban Roadside Environment in Jeju Area (제주지역 도로변 대기 중 에어로졸의 입경별 조성특성)

  • Hu, Chul-Goo;Kim, Su-Mi;Lee, Ki-Ho
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.79-93
    • /
    • 2020
  • To determine the size distributions of water-soluble inorganic ionic species (WSIS) in roadside aerosols, sampling experiments were carried out in the urban roadside area of Jeju City on August 2018 and January 2019 by using the eight-stage cascade impactor sampler. The mass of roadside aerosols were partitioned at 57% in fine fraction, 36-37% in coarse fraction, and 6-7% in giant fraction, regardless of summer and winter. The mass concentrations of WSIS except for Na+ and SO42- in roadside aerosols were higher in winter than in summer. The size distributions of Na+, Mg2+, Ca2+ and Cl- were characterized by bimodal types with coarse particle mode peaking around 3.3-4.7 ㎛ and 5.8-9.0 ㎛. The size distributions of NO3- and K+ shifted from a single fine mode peaking around 0.7-1.1 ㎛ in winter to bimodal and/or trimodal types with peaks around coarse mode in summer. SO42- and NH4+ showed a single fine mode peaking around 0.7-1.1 ㎛. The MMAD of roadside aerosols was lower than that of Na+, Mg2+, Ca2+ and Cl-. Based on the marine enrichment factors and the ratio values of WSIS and the corresponding value for sea water, the composition of roadside aerosols in Jeju City may be practically affected by terrestrial sources rather than marine source.