• Title/Summary/Keyword: Mass flow rate

Search Result 1,725, Processing Time 0.028 seconds

Flow Measurement of Liquid Oxygen using the Multi-hole Orifice (다공 오리피스를 이용한 액체산소 유량측정)

  • Lim, Hayoung;Lee, Jisung;Kim, Junghan;Noh, Yongoh
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1031-1035
    • /
    • 2017
  • To measure the flow rate of the liquid oxygen, two types of multi-hole orifice meter were prepared. The $C_d$ of the orifice meter was determined by the flow test using water. After performing the liquid oxygen flow test for orifice meter and Coriolis meter, the mass flow rate was calculated using the $C_d$. The error of the mass flow rate compare to Coriolis meter, A-type(1/2") was below than 0.4%, B-type(3/4") was below than 0.8%.

  • PDF

Numerical Investigation on Fire of Stage in Theater: Effects of Natural Smoke Vent Area and Fire Source Location (공연장 무대부 화재에 대한 전산해석 연구: 자연 배연구 면적과 화원 위치 영향)

  • Park, Min Yeong;Lee, Chi Young
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • This numerical study investigates the effects of the size of the natural smoke vent area (10% and 1% of the floor area) and the location of the fire source (i.e., at the side and center of the stage) on the temperature distribution in the compartment and velocity distribution and mass flow rate of flow through a natural smoke vent for a reduced-scale model of a theater stage. Then, the mass flow rate of outflow through the natural smoke vent in the event of a fire for a real-scale theater stage was examined. The case with the larger natural smoke vent area and central fire source location showed lower temperature distributions and higher mass flow rates of outflow and inflow than the case with the smaller natural smoke vent area and side fire source location. The trends of the temperature distributions were closely related to those of the mass flow rates for the outflow and inflow. Additionally, the case with the larger natural smoke vent area and central fire source location exhibited the most non-uniform flow velocity distribution in all cases tested. A bidirectional flow, in which the outflow and inflow occur simultaneously, was observed through the natural smoke vent. In the event of a fire situation in a real-scale theater stage, it was predicted that the case with the larger natural smoke vent area and central fire source location would have a mass flow rate of outflow that is 43.53 times higher than that of the case with the smaller natural smoke vent area and side fire source location. The present results indicate that the natural smoke vent location should be determined by considering the location in a theater stage where a fire can occur.

Mass transfer in cross-flow dialyzer with internal recycle

  • Yeh, Ho-Ming;Chen, Chien-Yu
    • Membrane and Water Treatment
    • /
    • v.4 no.4
    • /
    • pp.251-263
    • /
    • 2013
  • The internal reflux effect on dialysis through the retentate phase of a countercurrently cross-flow rectangular module is investigated. Theoretical analysis of mass transfer in cross-flow devices with or without recycling is analogous to heat transfer in cross-flow heat exchangers. In contrast to a device without reflux, considerable mass transfer is achievable if cross-flow dialyzers are operated with reflux, which provides an increase in fluid velocity, resulting in a reduction in mass-transfer resistance. It is concluded that reflux can enhance mass transfer, especially for large flow rate and feed-concentration operated under high reflux ratio.

Simulation of the flow characteristics of R1234yf flowing through capillary tubes (냉매 R1234yf의 모세관내 유동 특성에 관한 해석적 연구)

  • Kim, Daeyeong;Park, Chasik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6452-6457
    • /
    • 2014
  • R1234yf has been developed as an alternative refrigerant to R134a, which has been associated with global warming. The capillary tubes as expansion valves control the mass flow rate and balance system pressure in the refrigeration cycle. The present numerical model used the governing equations including the law of conservation of mass, momentum, and energy in a capillary tube. The mass flow rate of R1234yf decreased by 47.0% as the capillary tube length was increased from 1 to 4 m. As the inner diameter of the capillary tubes was changed from 1.3 to 1.7 mm, the mass flow rate of R134a and R1234yf increased by 117.9% and 121.0%, respectively. The mass flow rate of the R134a and R1234yf increased by 28.3% and 29.1% with subcooling increasing from 0 to $7^{\circ}C$. In addition, when the inlet temperature of the capillary tubes was changed from 35 to $60^{\circ}C$, the mass flow rate of R134a and R1234yf increased by 31.0% and 45.4%, respectively.

Effects of Gas Flow Variables on the Crystal Growth of Diamond in Hot Filament-Assisted CVD (고온 필라멘트 다이아몬드 CVD에서 기체유동변수가 결정성장에 미치는 영향)

  • 서문규;이지화
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.88-96
    • /
    • 1994
  • Hot filament-assisted CVD was carried out to deposit diamond films on Si(100) substrate at 90$0^{\circ}C$ using a 1% CH4-H2 mixture gas. Deposition was made at various conditions of mass flow rate of the feed gas (30~1000 sccm), pressure (2.5~300 Torr), and filament-substrate distance (4~15 mm), and the deposited films were characterized by SEM, XRD, and Raman spectroscopy. As the flow rate increases, the growth rate also increased but the crystallinity of the film was degraded. A longer filament-substrate distance simply caused both the growth rate and the crystallinity to become poorer. On the other hand, the pressure variation resulted in a maximum growth rate of 2.6 ${\mu}{\textrm}{m}$/hr at 10 Torr and the best film quality around 50 Torr, exhibiting an optimum condition. The observed trends were interpreted in terms of the flow velocity-dependent pyrolysis reaction efficiency and mass transport through the boundary layer.

  • PDF

A Fundamental Study on Offshore Structures of high pressure control valve (해양구조물용 고압 컨트롤 밸브에 대한 기초 연구)

  • Lee, Chi-Woo;Jang, Sung-Cheol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.883-888
    • /
    • 2010
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD (Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin (C3H8O3). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve, Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

Analysis of the Flow Rate for a Natural Cryogenic Circulation Loop during Acceleration and Low-gravity Section (극저온 자연순환회로의 가속 및 저중력 구간 유량 분석)

  • Baek, Seungwhan;Jung, Youngsuk;Cho, Kiejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.43-52
    • /
    • 2019
  • Cryogenic propellant rockets utilize a natural circulation loop of cryogenic fluid to cool the engine inlet temperature before launch. The geometric information about the circulation system, such as length and diameter of the pipes and the heat input to the system, defines the mass flow rate of the natural circulation loop. We performed experiments to verify the natural circulation mass flow rate and compared the results with the analytical results. The comparison of the mass flow rate between experiments and numerical simulations showed a 12% offset. We also included a prediction of the natural circulation flow rate in the low-gravity section and in the acceleration section in the upper stage of the launch vehicle. The oxygen tank should have 100 kPa(a) of pressure in the acceleration section to maintain a high flow rate for the natural circulation loop. In the low-gravity section, there should be an optimal tank pressure that leads to the maximum natural circulation flow rate.

Experimental Study on Heat and Mass transfer Coefficient Comparison Between Counterflow Types and Parallel in Packed Tower of Dehumidification System

  • Sukmaji, I.C.;Choi, K.H.;Yohana, Eflita;Hengki R, R.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.162-169
    • /
    • 2009
  • In summer electrical energy is consumed in very high rate. It is used to operate conventional air conditioning system. Hot and humid air can germinate mould spores, encourage ill health, and create physiological stress (discomfort). Dehumidifier solar cooling effect is the one alternative solution saving electrical energy. We use surplus heat energy in the summer, to get cooling effect and then to get human reach to comfort condition. These devices have two system, dehumidifier and regeneration system. This paper will be focus in dehumidifier system. Dehumidifier system use for absorbing moisture in the air and decreasing air temperature. When the liquid desiccant as strong solution contact with the vapor air in the packed tower, it works. The heat and mass transfer performances of flow pattern in the packed tower of dehumidifier are analyzed and compared in detail. In this experiment was introduced, the flow patterns are parallel flow and counter flow. The performance of these flow patterns will calculate from air side. Which is the best flow pattern that gave huge mass transfer rate? The proposed dehumidifier flow pattern will be helpful in the design and optimization of the dehumidifier solar cooling system.

  • PDF

Effects of Bleed Flow and Angled Ribs on Heat Transfer Distributions in a Rotating Square Channel (유출유동 및 각도진 요철이 회전하는 사각덕트 내 열전달분포에 미치는 영향)

  • Park, Suk-Hwan;Jeon, Yun-Heung;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.76-82
    • /
    • 2007
  • The present study investigated the effects of channel rotation and bleed flow on heat/mass transfer in a square channel with $45^{\circ}$ rib turbulators. The bleed holes were located between the rib turbulators on the leading surface and those on the trailing surface case by case. The tests were conducted under the conditions of various bleed ratios (0.0, 0.2, 0.4) and rotation numbers (0.0, 0.2, 0.4) at Re=10,000. The results suggested that heat/mass transfer characteristics were influenced by the Coriolis force, decrement of main flow rate, secondary flow by angled ribs and bleed hole location. As the bleed ratio (BR) increased, the heat/mass transfer decreased on both surfaces due to the reduction of main flow rate. With increment of the rotation number, heat/mass transfer also decreased and almost the same because the reattachment of the secondary flow induced by angled ribs was weakened on the leading surface and the secondary flow was disturbed on the trailing surface by the Coriolis force.

A Study on the Two-Phase Flow Transition and Atomization Characteristics in Effervescent Injectors (기체주입식 분사기의 이상유동 변화와 분무특성에 관한 연구)

  • Lee, Kangyeong;Jung, Hadong;Kang, Cheolwoong;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.144-154
    • /
    • 2022
  • Gas injection is a technique applied to improve throttling in liquid rocket engines and atomization in effervescent injectors. When a gas is injected into a liquid, it creates a two-phase flow inside the injector. The changes (bubbly flow, slug flow, annular flow, etc.) in the two-phase flow affect the injector's spray characteristics. In this study, cold-flow tests were performed by using three injectors with different orifice diameters and four aerators with different gas injection hole diameters. The experiments were done by changing the thrust ratio (liquid mass flow rate ratio) and gas-liquid mass flow rate ratio. Two-phase flow transition, breakup length, and discharge coefficient according to the injector/aerator design and flow conditions were investigated in detail.