• Title/Summary/Keyword: Mass culture conditions

Search Result 281, Processing Time 0.036 seconds

Optimal Conditions for the Production of Salt-tolerant Protease from Aspergillus sp. 101 and Its Characteristics (Aspergillus sp. 101로부터 내염성 단백분해효소 생산을 위한 최적 조건 및 특성)

  • Hwang, Joo-Yeon;Choi, Seung-Hwa;Lee, Si-Kyung;Kim, Sang-Moo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.11
    • /
    • pp.1612-1617
    • /
    • 2009
  • Aspergillus sp. 101 was isolated from the Korean traditional soybean paste for the production of a salt-tolerant protease. The optimal condition for the production of a salt-tolerant protease was determined with various energy sources such as carbon, nitrogen, and protein, and at different culture conditions such as temperature, pH, incubation time and NaCl concentration. The most favorable organic nitrogen sources were 2% defatted soybean flour (DSF) and soy protein isolate (SPI). Optimal pH and temperature were pH 6.0 and $25{\sim}27^{\circ}C$, respectively. Therefore, Aspergillus sp. 101 protease was a mild acid (or neutral) protease. Protease production was the highest at 0.1% concentration of $CaCO_3,\;K_2HPO_4$ and Arabicgum. Aspergillus sp. 101 could grow in culture medium at 15% NaCl concentration and produce a salt-tolerant protease even at 7% NaCl. The cell mass and protease activity of Aspergillus sp. 101 cultured in a modified medium was comparatively higher in Czapek dox and protease producing media. Hence, Aspergillus sp. 101 protease can be utilized in soy or fish sauce industry as a salt-tolerant protease starter.

Population growth of a tropical tintinnid, Metacylis tropica on different temperature, salinity and diet (수온, 염분 및 먹이에 따른 열대 유종류, Metacylis tropica의 성장)

  • Lee, Kyun-Woo;Choi, Young-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.322-328
    • /
    • 2016
  • This study investigated the effects of temperature, salinity, and algal diet to find the optimal conditions for 5 days for the mass culture of the tropical tintinnid, Metacylis tropica. This tintinnid had a small, hyaline, and ovoid lorica. The oral diameter, length, and maximum width of the lorica were $36.7{\mu}m$, $49.5{\mu}m$, and $44.5{\mu}m$, respectively. In the temperature experiments, the highest maximum density and population growth rate were observed at $30^{\circ}C$ with 340.7 cells/mL and 1.1/day, respectively. Lower salinities adversely affected the population growth of M. tropica. The maximum density was observed at 33 ppt (840 cells/mL). In the diet experiments, M. tropica fed Isochrysis galbana showed the highest density (413 cells/mL) and population growth rate (1.2/day). As a result, M. tropica is appropriate as a potential prey organism for early fish larvae with smaller mouths because the tintinnid has a relatively small size compared to the rotifer. In addition, the conditions of $30^{\circ}C$, 33 ppt and supplying I. galbana would be effective in the cultivation of M. tropica.

Photosynthetic characteristics and growth analysis of Angelica gigas according to different hydroponics methods (당귀의 광합성 특성과 수경재배 방식에 따른 생장 분석)

  • Park, Jong-Seok;Kim, Sung-Jin;Kim, Hong-Ju;Choi, Jong-Myung;Lee, Gong-In
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.321-326
    • /
    • 2014
  • The aim of this study was to investigate which hydroponic system is the optimum for growth and photosynthetic characteristics of Angelica gigas during experiment. Angelica gigas 'Manchu' were sowed and managed under a growth room chamber. The environmental conditions (temperature $22^{\circ}C/18^{\circ}C$ (day/night), relative humidity 50-70%, photosynthetic photon flux density (PPFD) $120{\pm}6{\mu}mol\;m^{-2}s^{-1}$) were maintained for 3 weeks. Forty eight seedlings with 4-5 leaves were transplanted in deep flow technique (DFT), substrate, and spray culture systems [culture bed: 800 (L) ${\times}$ 800 (W) ${\times}$ 400 mm(H)] under $150{\pm}5{\mu}mol\;m^{-2}s^{-1}$ PPFD provided with fluorescence lamps and cultivated for 11 weeks. At the end of the experiment, fresh and dry weights, leaf lenghth and width, SPAD, root fresh, and dry weights, and root volume of Anglica gigas were measured. Photosynthetic rate of Anglica gigas were measured with portable photosynthesis systems to investigate optimum PPFD, $CO_2$ concentration, and air temperature conditions. Fresh and dry weights of Anglica gigas grown in substrate were significantly greater than DFT-treated, but there were not significant with spray treatment. Leaf photosynthesis of Anglica gigas showed the tendency to sharply increase as PPFD was increased from 50 to $200{\mu}mol\;m^{-2}s^{-1}$. Though $CO_2$ saturation point was around $1000-1200{\mu}mol\;mol^{-1}$, increase in air temperature from 16 to $26^{\circ}C$ did not quite affect photosynthesis of Anglica gigas. In conclusion, Anglica gigas may be optimally cultivated with a spray culture system as air temperature, PPFD, and $CO_2$ concentration for environment are controlled at $20{\pm}3^{\circ}C$, $150{\mu}mol\;m^{-2}s^{-1}$, and around $1000{\mu}mol\;mol^{-1}$ for mass production.

Characteristics of bioethanol production using sweet sorghum juice as a medium of the seed culture (단수수 착즙액이용 배양종균의 바이오에탄올 생산 특성 연구)

  • Cha, Young-Lok;Moon, Youn-Ho;Yu, Gyeong-Dan;Lee, Ji-Eun;Choi, In-Seung;Song, Yeon-Sang;Lee, Kyeong-Bo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.627-633
    • /
    • 2016
  • Sweet sorghum [Sorghum bicolor (L)] is one of the major crops for biofuels such as sugarcane and sugar beet which raw materials rich in saccharide. Sweet sorghum juice was extracted from the stem. It's composed of fermentable sugars such as glucose, fructose and sucrose. Ethanol from the extracted sweet sorghum juice can be easily produced by yeast fermentation process. Sweet sorghum juice is consisted of not only sugars but also various nutrients like nitrogen and phosphate. For commercial production of bioethanol, seed culture is one of the important parts of fermentation, so that optimal culture medium should be selected for the reduction of processing costs. In this study, sweet sorghum juice was estimated as a culture medium for seed culture of cellulosic bioethanol. For the comparison of cultures with various substrates, it used YPD including each 5 g/L yeast extract and peptone, sweet sorghum juice and hydrolyzed Miscanthus was taken part in the culture with 2%, 5% and 10% sugar conditions. Based on media of YPD and sweet sorghum juice, cell-mass concentration was obtained maximum more than $2.5{\times}10^8CFU/mL$ after 24 h of cultivation. Consequently sweet sorghum juice is suitable for the cell culture with more than $1.0{\times}10^8CFU/mL$ after 12 h of cultivation. This can be used as a culture medium for the cellulosic bioethanol industry.

Microprogation And Environment Conditions Affecting On Growth Of In Vitro And Ex Vitro Of A. Formosanus Hay

  • Ket, Nguyen-Van;Paek, Kee-Yoeup
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2002.11a
    • /
    • pp.29-30
    • /
    • 2002
  • The goal of this research was to develop the effectiveness of in vitro culture method for A. formosanus and study the environment in vitro conditions affecting on growth. The first series of experiments were examined to investigate the response of three different basal media, MS (Murashige and Skoog, 1962), Knudson (KC; Knudson, 1946) and modified hyponex on growth and multiplication during in vitro culture. Multiple shoot proliferation was induced in shoot tip explants on Hyponex (H3) media supplemented with BA (1 mg1$\^$-1/) or TDZ (1-2 mg1$\^$-1/). Addition of activated charcoal (1%) to the TDZ containing medium promoted rapid shoot tip proliferation (11.1 shoots per explant) but the same medium had an opposite effect resulting in poor proliferation in the nodal explants. However, the regenerated shoots had slow growth rate and failed to elongate. This problem was overcome by transferring the shoot clumps to a hormone free H3 media supplemented with 2% sucrose and 0.5% activated charcoal. Using bioreactor culture for scaling up was also shown the best way for multiple shoot induction and growth of this plant. The second series of experiments was studied to investigate the effect of physical environment factors on growth of in vitro plantlets. The Anoectochilus formosanus plantlets were cultured under different air exchange rate (0.1, 0.9, 1.2h$\^$-1/), without sucrose or supplement 20g.1$\^$-1/ (photoautotrophic or photomixotrophic, respectively), and different photosynthesis photon flux (40, 80, 120 ,${\mu}$mol.m$^2$.s$\^$-1/- PPF). Under non-enrichment CO$_2$ treatment, slow growth was observed in photoautotrophical condition as compared with photomixotrophical condition on shoot height, fresh weigh and dry weight parameters; High air exchange (1.2.h-l) was found to be inadequate for plant growth in photomixotrophical condition. On the contrary, under CO$_2$, enrichment treatment, the plant growth parameters were sharply (visibly) improved on photoautotrophic treatments, especially on the treatment with air exchange rate of 0.9.h-1. The growth of plant in photoautotrophic condition was not inferior compared with photomixotrophic, and the best growth of plantlet was observed in treatment with low air exchange rate (0.9.h-1). Raising the PPF level from 80 to 120${\mu}$mol.m$\^$-2/.s$\^$-1/ decreased the plant height, particularly at 120${\mu}$mol.m$\^$-2/.s$\^$-1/ in photoautotrophic condition, fresh weight and dry weight declined noticeably. At the PPF of 120${\mu}$mol.m$\^$-2/,s$\^$-1/, chlorophyll contents lowed compared to those grown under low PPF but time courses of net photosynthesis rate was decreased noticeably. Light quality mainly affected morphological variables, changes of light quality also positively affected biomass production via changes in leaf area, stem elongation, chlorophyll content. Plant biomass was reduced when A. formosanus were grown under red LEDs in the absence of blue wavelengths compare to plants grown under supplemental blue light or under fluorescent light. Stem elongation was observed under red and blue light in the present experiment. Smaller leaf area has found under blue light than with other lighting treatments. Chlorophyll degradation was more pronounced in red and blue light compared with white light or red plus blue light which consequent affected the photosynthetic capacity of the plant. The third series of experiment were studied to investigate the effect of physical environment factors on growth of ex vitro plants including photosynthesis photon flux (PPF), light quality, growing substrates, electrical conductivity (EC) and humidity conditions. In the present experiments, response of plant on PPF and light quality was similar in vitro plants under photosynthesis photon flux 40${\mu}$mol.m,$\^$-2/.s$\^$-1/ and white light or blue plus red lights were the best growth. Substrates testing results were indicated cocopeat or peat moss were good substrates for A. formosanus growth under the greenhouse conditions. In case of A. formosanus plants, EC is generally maintained in the range 0.7 to 1.5 dS.m-1 was shown best results in growth of this plant. Keeping high humidity over 70% under low radiation enhanced growth rate and mass production.

  • PDF

Fermentation Process for Mass Production of Clitocybin A, a New Anti-Wrinkle Agent from Clitocybe aurantiaca and Evaluation of Inhibitory Activity on Matrix Metalloproteinase-1 Expression (Clitocybe aurantiaca 균주가 생산하는 주름개선소재 clitocybin A의 대량 발효생산 및 MMP-1 발현저해활성)

  • Kim, Kwan-Chul;Lee, Hyeok-Won;Lee, Hong-Won;Choo, Soo-Jin;Yoo, Ick-Dong;Ha, Byung-Jo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.194-201
    • /
    • 2014
  • Clitocybin A is a novel anti-wrinkle cosmetic agent produced by the strain from a Korean native mushroom Clitocybe aurantiaca. In this study, fermentation, extraction, and purification conditions for a large scale production of clitocybin A were optimized, and its cytotoxicity and inhibition activity on the expression of matrix metalloproteinase-1 (MMP-1) were characterized. The mass production of anti-wrinkle agent was achieved according to the 300 L fermentation process with a fed-batch cultivation using the modified yeast-maltose (YM) broth, and a total of 12.5 kg of cell mass was obtained in a 120 L culture broth for 14 days. After extraction and purification, clitocybin A was identified by HPLC. The cytotoxicity of clitocybin A was examined by the MTT assay. When assayed at 100 and 200 ${\mu}g/ml$ concentrations, clitocybin A showed no cytotoxicity, demonstrating safety. The inhibition activity of clitocybin A on the expression of MMP-1 was examined against UV irradiation. Oleanolic acid (control group) showed a relatively low MMP-1 inhibiting activity (ca. 16.7%) at 10 ${\mu}g/ml$ and showed increased cytotoxicity at higher concentrations. In contrast, clitocybin A showed no cytotoxicity at 100 ${\mu}g/ml$, and exhibited a relatively high MMP-1-inhibiting activity (33.1%). These findings indicate that clitocybin A may be a safe and effective anti-wrinkle agent for use in functional cosmetics.

Selection of Filamentous Cyanobacteria and Optimization of Culture Condition for Recycling Waste Nutrient Solution (폐양액 활용을 위한 Filamentous Cyanobacteria의 선발 및 최적배양)

  • Yang, Jin-Chul;Chung, Hee-Kyung;Lee, Hyoung-Seok;Choi, Seung-Ju;Yun, Sang-Soon;Ahn, Ki-Sup;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • The discharge of waste nutrient solution from greenhouse to natural ecosystem leads to the accumulation of excess nutrients that results in contamination or eutrophication. There is a need to recycle the waste nutrient solution in order to prevent the environmental hazards. The amount and kind of nutrients in waste nutrient solution might be enough to grow photosynthetic microorganisms. Hence in the present study, we examined the growth and mass cultivation of cyanobacteria in the waste nutrient solution with an objective of removing N and P and concomitantly, its mass cultivation. Four photosynthetic filamentous cyanobacteria (Anabaena HA101, HA701 and Nostoc HN601, HN701) isolated from composts and soils of the Chungnam province were used as culture strains. Among the isolates, Nostoc HN601 performed faster growth rate and higher N and P uptake in the BG-II ($NO_3{^-}$) medium when compared to those of other cyanobacterial strains. Finally, the selected isolate was tested under optimum conditions (airflow at the rate of $1L\;min^{-1}$. in 15 L reactor, initial pH 8) in waste nutrient solution from tomato hydroponic in green house condition. Results showed to remove 100% phosphate from the waste nutrient solution in the tomato hydroponics recorded over a period of 7 days. The growth rate of Nostoc HN601 was $16mg\;Chl-a\;L^{-1}$ in the waste nutrient solution from tomato hydroponics with optimum condition, whereas growth rate of Nostoc HN601 was only $9.8mg\;Chl-a\;L^{-1}$ in BG-11 media. Nitrogen fixing capacity of Nostoc HN601 was $20.9nmol\;C_2H_4\;mg^{-1}\;Chl-a\;h^{-1}$ in N-free BG-11. The total nitrogen and total phosphate concentration of Nostoc HN601 were 63.3 mg N gram dry weight $(GDW)^{-1}$ and $19.1mg\;P\;GDW^{-1}$ respectively. Collectively, cyanobacterial mass production using waste nutrient solution under green house condition might be suitable for recycling and cleaning of waste nutrient solution from hydroponic culture system. Biomass of cyanobacteria, cultivated in waste nutrient solution, could be used as biofertilizer.

Artificial Mass Culture of Flat Oyster Larvae, Ostrea denselamellosa, and Collection Rates according to Various Spat Collection Methods (벗굴, Ostrea denselamellosa, 유생의 인공대량사육과 채묘방법에 따른 채묘율)

  • 양문호;김형섭;이재용;한창희
    • The Korean Journal of Malacology
    • /
    • v.17 no.1
    • /
    • pp.35-44
    • /
    • 2001
  • This research was conducted to develop seedling production techniques in flat oyster, Ostrea dense lamellosa. The cultivation of larvae, artificial spat and spats collection in natural conditions rate were examined. In the mass culture tank (3 tons), average growth rates of the D Shape larvae of initial shell length (153.4 ㎛) and shell height (153.4 ㎛) were 202.6% and 212.9% at 16 days and 227.1%, 241.8% at 20 days, respectively. Instantaneous death and survival rate of the larvae were 0.160 and 54.8% at 16 days and 0.057 and 43.2% at 20 days, respectively. Collection rate of flat oyster from bottom using various collectors with oyster shell, scallop shell, ark shell and PVC plates were 32.9%, 24.1%, 16.8% and 10.0%, respectively. and the greatest collecting rate was 131.9 individuals/shell (32.9%) in laid collectors on the bottom. The collecting rate of the oyster larvae were better in laid collectors on the bottom 83.8 individuals/collection than in the suspended string 54.2 individuals/collection. in all collecting substrates. Early spats settled on collectors were grew to 2.38 $\pm$ 0.97 ㎜ in shell length and 2.16 $\pm$ 0.86 ㎜ In shell height at 26 days. The spats were grew to 28.58 $\pm$ 2.39 ㎜ in shell length and 31.65 $\pm$ 2.03 ㎜ in shell height during the 4 month mid-term cultivation. In the period of cultivation, the mean number of spats attached to collectors were 10.3 individuals at oyster shells, 5.8 scallop shells, 4.0 ark shells and 1.5 PVC plates, respectively.

  • PDF

Mycelial Production and Amylase Activity of Fungi for Brewing in Different Submerged Culture Conditions (액체배양에서의 양조용 곰팡이의 균체 생산 및 전분분해효소 활성)

  • Noh, Jong-Min;Choi, Ji-Ho;Jung, Seok-Tae;Yeo, Soo-Hwan;Park, Jang-Woo;Lee, Jin-Won;Choi, Han-Seok
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.23 no.6
    • /
    • pp.833-838
    • /
    • 2013
  • In this study, twelve strains of brewing fungi were individually cultivated on wheat extract broth (WEB), potato dextrose broth (PDB) and malt extract broth (MEB) in order to determine the microorganism with good culture characteristics as well as with amylolytic activity. The strain cultured in PDB exhibited mycelia production from 12.6 g/L (Rhizopus oryzae KACC 45714) to a maximum of 48.0 g/L (Aspergillus oryzae KACC 46959), which was 2.3~9.2 times lower than that of the strain cultured in WEB and 1.7~14.6 times lower than that of the strain cultured in MEB. Accorfing the results, We found that the commercial strains of A. oryzae Suwon, CF1001 and CF1003 had a higher dry cell mass than the wild-type strains KACC 46421, 46423, 46424 and 46959. For Rhizopus sp., the acidity levels in WEB, PDB and MEB were 0.12~0.47%, 0.22~1.0% and 0.16~0.68% (equivalent lactic acid concentration) respectively. For A. oryzae, the acidity levels were 0.06~0.11%, 0.03~0.04% and 0.06~0.08% (equivalent lactic acid concentration), respectively. Amylase enzyme from Rhizopus delemar KACC 46419 exhibited an enzyme activity of 0.013 U and 0.019 U in WEB and MEB cultures, respectively. The enzyme activity of the amylase enzyme from A. oryzae was 0.019~0.037, 0.017~0.033 and 0.028~0.046 U in WEB, PDB and MEB cultures, respectively.

Optimum Culture Conditions of Four Species of Microalgae as Live Food from China (중국산 식물먹이생물 4종의 최적 배양환경)

  • 박정은;허성범
    • Journal of Aquaculture
    • /
    • v.13 no.2
    • /
    • pp.107-117
    • /
    • 2000
  • Optima for temperature, salinity and light intensity for Nitzschia closterium, Chlorella salina, I내초교냔 galbana and Tetraselmis subcordiformis, which are widely used in bivalve hatcheries of Shandong Province in China, were estimated. The temperature optimum was 23 $^{\circ}C$ for N. closterium and I. galbana and 25 and 27$^{\circ}C$ for C. salina and T. subcordiformis, respectively. That for salinity was 23${\textperthousand}$ for N. closterium and T, subcordiformis, but was 33${\textperthousand}$ for C. salina and I. galbana. In general, all the four microalgae grew faster under 6,000 lux than under 4,000 lux. Growth of N. closterium was faster at $25^{\circ}C$ and dropped abruptly >$25^{\circ}C$, and that of C. salina and T. subcordiformis progressively increased upto $25^{\circ}C$ but dropped beyond 27$^{\circ}C$. T. subcordiformis was the most eurythermal among the 4 species. For mass culture of microalgae in Korea, N. closterium and C. salina are suitable during spring and autumn but C. salina and I. galbana during summer. T. subcordiformis is suitable for culture throughout the year.

  • PDF