• 제목/요약/키워드: Mass Flux Ratio

검색결과 114건 처리시간 0.026초

Derivation of Mechanistic Critical Heat Flux Model and Correlation for Water Based on Flow Excursion

  • Chang, Soon-Heung;Kim, Yun-Il;Baek, Won-Pil
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.349-355
    • /
    • 1996
  • In this study, the mechanistic critical heat flux (CHF) model and correlation for water are derived based on flow excursion (or Ledinegg instability) criterion and the simplified two-phase homogeneous model. The relationship between CHF for the water and the principal parameters such as mass flux heat of vaporization, heated length-to-diameter ratio, vapor-liquid density ratio and inlet subcooling is derived on the developed correlation. The developed CHF correlation predicts very well at the applicable ranges, 1 < P < 40 bar, 1, 300 < G 27, 00 kg/$m^2$s and inlet quality is less than -0.1. The overall mean ratio of predicted to experimental CHF value is 0.988 with standard deviation of 0.046.

  • PDF

Combustion Efficiency of Boron Carbide Fuel Solid Fuel Ramjet

  • Lee, Tae-Ho
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.722-725
    • /
    • 2004
  • An experimental investigation was conducted to investigate the effects of the equivalence ratio and air mass flux on the combustion efficiency in a solid fuel ramjet used fuel grains which were highly loaded with boron carbide. Combustion efficiency increased with increasing equivalence ratio (grain length), and decreasing air mass flux. Higher inlet air temperature produced higher combustion efficiencies, apparently the result of enhanced combustion of the larger boron particles those bum in a diffusion controlled regime. Short grains which considered primarily of the recirculation region produced larger particles and lower combustion efficiencies. The result of the normalized combustion efficiency increased with inlet air temperature, is coincident with the result of the Brayton cycle thermal and the total efficiency relating to the heat input.

  • PDF

Convective heat and mass transfer affected by aspect ratios for physical vapor transport crystal growth in two dimensional rectangular enclosures

  • Kim, Geug Tae;Kwon, Moo Hyun
    • 한국결정성장학회지
    • /
    • 제28권2호
    • /
    • pp.63-68
    • /
    • 2018
  • Natural convection of a two dimensional laminar steady-state incompressible fluid flow in a rectangular enclosure has been investigated numerically for low aspect ratios with the physical vapor transport crystal growth. Results show that for aspect ratio (Ar = L/H) range of $0.1{\leq}Ar{\leq}1.5$, with the increase in Grashof number by one order of magnitude, the total mass flux is much augmented, and is exponentially decayed with the aspect ratio. Velocity and temperature profiles are presented at the mid-width of the rectangular enclosure. It is found that the effect of Grashof number on mass transfer is less significant when the enclosure is shallow (Ar = 0.1) and the influence of aspect ratio is stranger when the enclosure is tall and the Grashof number is high. Therefore, the convective phenomena are greatly affected by the variation of aspect ratios.

횡단 유동장의 기액비 및 레이놀즈수 변화에 따른 외부혼합형 이상유체 제트의 액적크기 및 체적유속 특성 (Characteristics of SMD and Volume Flux of Two-phase Jet Injected into Cross-flow with Various Gas-liquid Ratio and Reynolds Number)

  • 김종현;이봉수;구자예
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.75-81
    • /
    • 2009
  • A study was performed to investigate the characteristics of two-phase jet injected into subsonic cross-flow using the external mixed gas blast two-phase nozzle. The shadowgraph method was adopted for the cross-flow jet visualization and PDPA system was used to measure droplet size, velocity, and volume flux. The atomization of two-phase jet is initially determined according to gas to liquid mass flow-rate ratio and the Reynolds number of cross-flows. The highest penetration trajectories of two-phase jet injected into cross-flow are governed by the momentum ratio at subsonic cross-flow. As GLR of two-phase jet injected into cross-flow increases, the droplet size decreases and the distribution area of volume flux increases. The distribution of volume flux that influenced by the counter vortex pair at the downstream of cross-flow is symmetric in shape of horseshoe.

THE CHEMICAL PROPERTIES OF PG QUASARS

  • 신재진;우종학
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.74.2-74.2
    • /
    • 2012
  • Metallicity is an important tracer of star formation in galaxy evolution. Based on the flux ratios of broad emission lines, AGN metallicity has shown a correlation with AGN luminosity. However, it is not clear what physical parameter drives the observed correlation. Using a sample 69 Palomar-Green QSOs at low-z (z<0.5), we determine BLR gas metallicity from emission line flux ratios, i.e., N V1240/C IV1549, (Si IV1398+O IV1402)/C IV1549 and N V1240/He II1640 based on the UV spectra from the HST and IUE archives. We compare BLR gas metallicity with various AGN properties, i.e., black hole mass, AGN luminosity and Eddington ratio, in order to investigate physical connection between metal enrichment and AGN activity. In contrast to high-z QSOs, which show the correlation between metallicity and black hole mass, we find that the metallicity of low-z QSOs correlates with Eddington ratio, but not with black hole mass, suggesting that metallicity enrichment mechanism is different between low-z and high-z.

  • PDF

FLUID-ELASTIC INSTABILITY OF ROTATED SQUARE TUBE ARRAY IN AN AIR-WATER TWO-PHASE CROSSFLOW

  • CHUNG HEUNG JUNE;CHU IN-CHEOL
    • Nuclear Engineering and Technology
    • /
    • 제38권1호
    • /
    • pp.69-80
    • /
    • 2006
  • Fluid-elastic instability in an air-water two-phase cross-flow has been experimentally investigated using two different arrays of straight tube bundles: normal square (NS) array and rotated square (RS) array tube bundles with the same pitch-to-diameter ratio of 1.633. Experiments have been performed over wide ranges of mass flux and void fraction. The quantitative tube vibration displacement was measured using a pair of strain gages and the detailed orbit of the tube motion was analyzed from high-speed video recordings. The present study provides the flow pattern, detailed tube vibration response, damping ratio, hydrodynamic mass, and the fluid-elastic instability for each tube bundle. Tube vibration characteristics of the RS array tube bundle in the two-phase flow condition were quite different from those of the NS array tube bundle with respect to the vortex shedding induced vibration and the shape of the oval orbit of the tube motion at the fluid-elastic instability as well as the fluid-elastic instability constant.

다중 영역법을 이용한 증발식 응축관 주위의 열 및 물질전달 해석 (Numerical study of heat and mass transfer around an evaporative condenser tube by multi-zone method)

  • 윤일철;이재헌
    • 대한기계학회논문집
    • /
    • 제19권12호
    • /
    • pp.3317-3328
    • /
    • 1995
  • The objective of the present study is to predict the characteristics of heat and mass transfer around an evaporative condenser. Numerical calculations have been performed using multi-zone method to investigate heat transfer rate and evaporation rate with the variation of inlet condition(velocity, relative humidity and temperature) of the moist air, the flow rate of the cooling water and the shape of the condenser tube. From the results it is found that the profile of heat flux is the same as that of evaporation rate since heat transfer along the gas-liquid interface is dominated by the transport of latent heat in association with the vaporization(evaporation) of the liquid film. The evaporation rate and heat transfer rate is increased as mass flow rate increases or relative humidity and temperature decrease respectively. But the flow rate of the cooling water hardly affect the evaporation rate and heat flux along the gas-liquid interface. The elliptic tube which the ratio of semi-minor axis to semi-major axis is 0.8 is more effective than the circular tube because the pressure drop is decreased. But the evaporation rate and heat flux shown independency on the tube shape.

고체 램제트 추진기관에서 보론 카바이드 연료의 연소, 성능 특성 (Combustion and Performance Efficiency of Boron Carbide Fuel in Solid Fuel Ramjet)

  • Lee, Tae-Ho
    • 한국추진공학회지
    • /
    • 제8권2호
    • /
    • pp.95-101
    • /
    • 2004
  • 보론 카바이드를 함유한 고체연료 그레인을 사용하여 당량비와 공기 질량 유속에 따라 연소 효율이 어떻게 변하는가를 조사하였다. 연소 효율은 당량비의 증가 방향과 질량유속 감소 방향에 따라서 증가하였다. 높은 흡입온도가 높은 연소 효율을 보이는데 이는 확산 영역에서 큰 보론 입자들의 연소 증진 결과이다. 재순환 영역으로 주로 이루어진 짧은 그레인에서는 큰 보론 입자의 형성으로 연소 효율은 감소하고 있다. 흡입 온도에 따라 증가하는 연소 효율은 흡입온도 증가에 따라 일반적으로 열역학적 사이클의 효율이 감소하는 것과는 상반되는 방향이나 실험적 결과를 해석할 때 합당한 결과로 나타나고 있다.

하이브리드 로켓의 산화제 종류에 따른 고체연료 연소특성 비교 (Comparison of Combustion Characteristic with GN2O and GOX as Oxidizer in Hybrid Rocket)

  • 이정표;조성봉;김수종;윤상규;박수향;김진곤
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.223-227
    • /
    • 2006
  • 하이브리드 추진 시스템에서의 산화제 종류에 따른 연소특성을 알아보기 위한 연구를 수행하였다. 산화제는 $GN_2O$와 GOX를 사용하고, 고체연료는 폴리에틸렌(PE)을 사용해 연소시험을 하였다. 산화제 종류에 따른 연소특성은 O/F 비에 따른 화염온도로 해석이 가능하였으며, $GN_2O$가 GOX보다 하이브리드 추진 시스템의 산화제로 효율이 좋음을 확인하였다 산화제의 유량은 직경이 다른 여러 개의 쵸킹 오리피스로 제어했고, 산화제 공급 유량범위는 $0.0138{\sim}0.0427kg/sec$ 이었다. 산화제 종류에 따른 연소특성을 표현하는 실험식은 고체연료의 질량유속으로 나타냈고, 이는 물질전달 수와 산화제의 질량유속으로 얻어진다.

  • PDF

작은 유로 내에서의 흐름응축 열전달 (II) -원형 및 사각유로에서의 실험적 연구- (Flow Condensation Inside Mini-Channels (II) -Experimental Study of the Circular and Rectangular Channels-)

  • 신정섭;김무환
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1432-1439
    • /
    • 2004
  • By using unique experimental techniques and careful construction of the experimental apparatus, the characteristics of the local heat transfer were investigated using the condensing R134a two-phase flow, in horizontal single mini-channels. The circular channels (D$_{h}$=0.493, 0.691, and 1.067 mm) and rectangular channels (Aspect Ratio=1.0, D$_{h}$=0.494, 0.658, and 0.972 mm) were tested and compared. Tests were performed for a mass flux of 100, 200, 400, and 600 kg/$m^2$s, a heat flux of 5 to 20 ㎾/$m^2$, and a saturation temperature of 4$0^{\circ}C$. In this study, effect of heat flux, mass flux, vapor qualities, hydraulic diameter, and channel geometry on flow condensation are investigated and the experimental local condensation heat transfer coefficients are shown. The experimental data of condensation Nusselt number are compared with existing correlations.ons.