• 제목/요약/키워드: Mass Flux

검색결과 915건 처리시간 0.034초

아이스슬러리형 빙축열 시스템을 이용한 냉각 시스템의 특성 분석 (Characteristic Analysis of the Cooling System Using Ice Slurry Type Heat Storage System)

  • 이동원;이순명
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.111-115
    • /
    • 2006
  • To clarify the hydraulic and thermal characteristics of ice slurry which made from 6.5% ethylene glycol-water solution flow in the double tube and plate type heat exchanger, experimental studies were performed. The mass flux and Ice fraction of ice slurry were varied from 800 to $3,500 kg/m^2s$(or 7 to 17 kg/min) and from 0 to 25%, respectively. During the experiment, it was found that the measured pressure drop and heat transfer rate increase with the mass flux and ice fraction; however the effect of ice fraction appears not to be significant at high mass flux region. At the region of low mass flux, a sharp increase in the pressure drop and heat transfer rate were observed depends on mass flux.

  • PDF

마이크로핀관과 평활관에서의 증발열전달과 압력손실 특성 (Evaporation heat transfer and Pressure loss in micro-fin tubes and a smooth tube)

  • 장세환;정시영;홍영기
    • 설비공학논문집
    • /
    • 제11권2호
    • /
    • pp.215-223
    • /
    • 1999
  • Evaporation heat transfer coefficient and pressure loss were measured for three different micro-fin tubes and a smooth tube. The experiments were carried out with R-22 over a wide range of vapor Quality, mass velocity and heat flux. Heat transfer coefficient of the tube with slightly modified fin shape was found to be higher than that of the commercial reference tube by 60%. The improvement of heat transfer has been achieved without noticeable increase of pressure loss. Heat transfer coefficient was increased with increasing quality, refrigerant mass flux, and heat flux. However, the effect of refrigerant mass flux and heat flux was not great. Heat transfer coefficient at bottom was lower than that at top of the tube in low quality region, which suggested the existence of stratification in the micro-fin tube. Pressure drop was linearly increased with increasing refrigerant quality and was proportional to about square of mass flux.

  • PDF

Particle Flux in the Eastern Bransfield Strait in 1999, Antarctica

  • Kim, Dong-Seon;Kim, Dong-Yup;Shim, Jeong-Hee;Kang, Sung-Ho;Kang, Young-Chul
    • Ocean and Polar Research
    • /
    • 제23권4호
    • /
    • pp.395-400
    • /
    • 2001
  • A time-series sediment trap was deployed at 1,034 m water depth in the eastern Bransfield Strait from December 25, 1998 to December 24, 1999. About 99 % of total mass fluxes were observed during the austral summer and fall (January, February, and March). The annual total mass flux was $49.2g\;m^{-2}$. Biogenic materials including biogenic silica, organic matter, and carbonate accounted for about 67% of total particle flux, and lithogenic materials contributed about 29%. Biogenic silica was the most dominant (42% of the total flux) in these components. The next most important biogenic component was organic matter, comprising 24% of total mass flux. Calcium carbonate contributed a small fraction of total mass flux, only 0.6%. The annual organic carbon flux was $5.2g\;C\;m^{-2}$ at 1,034m water depth. The annual primary production was estimated to be $21.6g\;C\;m^{-2}$ at the sediment trap site, which seems to be highly underestimated. About 5.5% of the surface water production of organic carbon sinks below 1,034m water depth.

  • PDF

Critical Heat Flux for Low Flow in Vertical Annulus under Various Pressure Conditions

  • Chun, Se-Young;Jun, Hyung-Gil;Chung, Heung-June;Moon, Sang-Ki;Chung, Moon-Ki
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.386-391
    • /
    • 1997
  • It is important to understand correctly a CHF under low flow condition for the purpose of enhancing the reactor safety and performance in the LWRs. The CHF experiments have been carried out for an internally heated vertical annulus in RCS loop facility. The experimental conditions cover ranges of pressure from 1.82 to 12.08 MPa, mass flux from 300 to 550kg/$m^2$. s and inlet subcooling of 210kJ/kg. The CHF data decrease with increasing pressure at high value of mass flux. For mass flux of about 300kg/$m^2$. s, the CHF rue little influenced by pressure. The CHF data are correlated well by using the dimensionless heat flux and dimensionless mass flux for a fixed inlet subcooling except the data group of 12.08 MPa. It seems that the Doerffer correlation and Katto correlation overestimate the CHF for low pressure and lower value of mass flux within this experimental ranges. The Bowling correlation gives a better prediction than the other two correlations.

  • PDF

An Experimental Study of Critical Heat Flux in Non-uniformly Heated Vertical Annulus under Low Flow Conditions

  • Chun, Se-Young;Moon, Sang-Ki;Baek, Won-Pil;Chung, Moon-Ki;Masanori Aritomi
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1171-1184
    • /
    • 2003
  • An experimental study on critical heat flux (CHF) has been performed in an internally heated vertical annulus with non-uniform heating. The CHF data for the chopped cosine heat flux have been compared with those for uniform heat flux obtained from the previous study of the authors, in order to investigate the effect of axial heat flux distribution on CHF. The local CHF with the parameters such as mass flux and critical quality shows an irregular behavior. However, the total critical power with mass flux and the average CHF with critical quality are represented by a unique curve without the irregularity. The effect of the heat flux distribution on CHF is large at low pressure conditions but becomes rapidly smaller as the pressure increases. The relationship between the critical quality and the boiling length is represented by a single curve, independent of the axial heat flux distribution. For non-uniform axial heat flux distribution, the prediction results from Doerffer et al.'s and Bowling's CHF correlations have considerably large errors, compared to the prediction for uniform heat flux distribution.

An Experimental Study on Dryout Pattern of Two-Phase Flow in Helically Coiled Tubes

  • Chung, Won-Seok;Sa, Young-Cheol;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1540-1549
    • /
    • 2002
  • Experimental results are presented for the effects of coil diameter, system pressure and mass flux on dryout pattern of two-phase flow in helically coiled tubes. Two tubes with coil diameters of 215 and 485 mm are used in the present study, Inlet system pressures range from 0.3 to 0.7 MPa, mass flux from 300 to 500 kg/㎡s, and heat flux from 36 to 80 kw/㎡. A partial dryout region exists because of the geometrical characteristics of the helically coiled tube. The length of the partial dryout region increases with coil diameter and system pressure. On the other hand, it decreases with increasing mass flux. The critical quality at the tube top side increases with mass flux, but decreases with increasing system pressure. This tendency is more notable when the coil diameter is larger. When the centrifugal force effect becomes stronger, dryout starts at the top and bottom sides of the tube. However, when the gravity effect becomes stronger, dryout is delayed at the tube bottom side. In some cases when the mass flux is low, dryout occurs earlier at the outer side than at the inner side of the tube because of film inversion.

알루미늄 다채널 평판관내 R-22 응축에 관한 연구 (R-22 Condensation in Flat Aluminum Multi-Channel Tubes)

  • 김정오;조진표;김내현
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.241-250
    • /
    • 2000
  • In this study, condensation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-22. Two internal geometries were tested ; one with smooth inner surface and the other with micro-fins. Data are presented for the followin~ range of variables ; vapor quality($0.1{\sim}0.9$), mass flux($200{\sim}600kg/m^2s$) and heat flux($5{\sim}15kW/m^2$). The micro-fin tube showed higher heat transfer coefficients compared with those of the smooth tube. The difference increased as the vapor quality increased. Surface tension force acting on the micro-fin surface at the high vapor quality is believed to be responsible. Different from the trends of the smooth tube, where the heat transfer coefficient increased as the mass flux increased, the heat transfer coefficient of the micro-fin tube was independent of the mass flux at high vapor quality, which implies that the surface tension effect on the fin overwhelms the vapor shear effect at the high vapor quality. Present data(except those at low mass flux and high quality) were well correlated by equivalent Reynolds number, Existing correlations overpredicted the present data at high mass flux.

Condensation oscillation characteristic of steam with non-condensable gas through multi-hole sparger at low mass flux

  • Dandi Zhang;Lili Tong;Xuewu Cao
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.780-791
    • /
    • 2023
  • To study oscillation characteristic of steam and non-condensable gas direct contact condensation through multi-hole sparger at low mass flux, a series of experiments of pure steam and mixture gas condensation have been carried out under the conditions of steam mass flux of 20-120kg/m2s, water temperature of 20-95 ℃ and mass fraction of non-condensable gas of 0-5%. The regime map of pure steam condensation through multi-hole sparger is divided into steam chugging, separated bubble, aggregated bubble and escaping aggregated bubble. The bubbles behavior of synchronization in the same hole columns and desynchronized excitation between different hole columns can be found. The coalescence effect of mixture bubbles increases with water temperature and non-condensable gas content increasing. Pressure oscillation intensity of pure steam condensation first increases and then decreases with water temperature increasing, and increases with steam mass flux increasing. Pressure oscillation intensity of mixture gas condensation decreases with water temperature and non-condensable gas content increasing, which is significantly weaker than that of pure steam condensation. The oscillation dominant frequency decreases with the rise of water temperature and non-condensable gas content. The correlations for oscillation intensity and dominant frequency respectively are developed in pure steam and mixture gas condensation at low mass flux.

알루미늄 다채널 평판관내 R-22 증발에 관한 실험적 연구 (An Experimental study on R-22 Evaporation in Flat Aluminum Multi-Channel Tubes)

  • 김정오;조진표;김종원;정호종;김내현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.96-103
    • /
    • 2000
  • In this study, evaporation heat transfer tests were conducted in flat aluminum multi-channel tubes using R-22. Two internal geometries were tested ; one with smooth inner surface and the other with micro-fins. Data are presented for the following range of variables ; vapor quality $(0.1{\sim}0.9)$, mass flux$(100{\sim}600kg/m^2s)$ and heat flux$(5{\sim}15kW/m^2)$. The micro-tin tube showed higher heat transfer coefficients compared with those of the smooth tube. Results showed that, for the smooth tube, the effects of mass flux, quality and heat flux were not prominent, and existing correlations overpredicted the data. For the micro-fin tube at low quality, the heat transfer coefficient increased as heat flux increased. However, the trend was reversed at high quality Kandlikar's correlation predicted the low mass flux data, and Shah's correlation predicted the high mass flux data. The heat transfer coefficient of the micro fin tube was approximately two times larger than that of the plain tube. New correlation was developed based on present data.

  • PDF

수평미세관내 R-290의 비등열전달 특성 (Boiling Heat Transfer Characteristics of R-290 in Horizontal Minichannel)

  • 최광일;;오종택
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.68-73
    • /
    • 2006
  • The present paper deals with an experimental study of boiling heat transfer characteristics of R-290, and is focused on pressure gradient and heat transfer coefficient of the refrigerant flow inside horizontal smooth minichannel with inner diameter of 3.0 mm and length of 2000 mm. The direct heating method applied for supplying heat to the refrigerant where the test tube was uniformly heated by electric current which was applied to the tube wall. The experiments were conducted with R-290 with purity of 99.99% at saturation temperature of 0 to $10^{\circ}C$. The range of mass flux is $50{\sim}250kg/m^2s$ and heat flux is $5{\sim}20kW/m^2$. The heat transfer coefficients of R-290 increases with increasing mass flux and saturation temperature, wherein the effect of mass flux is higher than that of the saturation temperature, whereas the heat flux has a low effect on increasing heat transfer coefficient. The significant effect of mass flux on heat transfer coefficient is shown at high quality, the effect of heat flux on heat transfer coefficient at low quality shows a domination of nucleate boiling contribution. The heat transfer coefficient of the experimental result was compared with six existing heat transfer coefficient correlation. Zang et al.'s correlation(2004) gave the best prediction of heat transfer coefficient.

  • PDF