• Title/Summary/Keyword: Mass Balance

Search Result 927, Processing Time 0.031 seconds

Estimation of CH4 oxidation efficiency in an interim landfill cover soil using CO2/CH4 ratios

  • Park, Jin-Kyu;Lee, Won-Jae;Ban, Jong-Ki;Kim, Eun-Cheol;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.191-197
    • /
    • 2015
  • The first objective of this study was to discuss the applicability of the $CO_2/CH_4$ ratio method in order to assess $CH_4$ oxidation efficiency. To achieve this objective, a comparison between $CO_2/CH_4$ ratios and the mass balance method was conducted. The second objective of this study was to estimate the $CH_4$ oxidation efficiency in an interim landfill soil cover and assess how a $CH_4$ influx influences the $CH_4$ oxidation efficiency. The results showed that despite the $CO_2$ problems brought by respiration, the $CH_4$ oxidation efficiencies obtained by the $CO_2/CH_4$ ratio method led to similar results compared to the mass balance method. In this respect, the $CO_2/CH_4$ ratio method can be an indicator of the $CH_4$ oxidation efficiencies for landfill cover soils. The $CH_4$ oxidation efficiencies derived in this study through the $CO_2/CH_4$ ratio method ranged between 46% and 64%, and between 41% and 62% through the mass balance method. The results imply that the Intergovernmental Panel on Climate Change's (IPCC) default value of 10% for the $CH_4$ oxidation efficiency is an underestimation for landfill cover soils. $CH_4$ oxidation efficiency tends to be negatively correlated with $CH_4$ influx. Therefore, $CH_4$ influx reaching a landfill cover should be limited in order to increase the $CH_4$ oxidation efficiency.

Purity assignment of 17β-estradiol by mass balance method

  • Lee, Hwa-Shim;Oh, Kwang-Hoon
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.226-233
    • /
    • 2017
  • In general, quantitative chemical analysis in various areas including food, the environment, in vitro diagnostics, etc., requires traceability in order to increase the reliability of the measurements. Measurement traceability is a property of an unbroken chain of comparisons relating an instrument's measurements to SI units. Purity analysis is the first process for establishing traceability to SI units in chemical measurements. The purpose of this study is to develop and validate a method of purity assignment for establishing the traceability of $17{\beta}$-estradiol measurements in an in vitro diagnostics field. The establishment of this method is very important as it can be applied to the development of CRM and to the analysis of the purity of other hormones. The method of assignment of the purity of $17{\beta}$-estradiol was developed using the mass balance method and was validated through participation in an International comparison. In the mass balance method, impurities are categorized into four classes as follows: total related structure impurities, water, residual organic solvents, and nonvolatiles/inorganics. In this study, total related structure impurities were characterized by a gas chromatography-flame ionization detector (GC-FID) and a high-performance liquid chromatography-ultraviolet (HPLC-UV) detector, water content was determined by a Karl-Fisher coulometer, and total residual solvents and nonvolatiles/inorganics were checked simultaneously by thermogravimetric analysis (TGA). The purity of the $17{\beta}$-estradiol was 985.6 mg/g and the expanded uncertainty was 2.1 mg/g at 95% confidence. The developed method can be applied to the development of certified reference materials, which play a critical role in traceability.

Estimation of Nutrient Mass Balance in a Phragmites Australis Community in Jinudo Through a Mesocosm Experiment (메조코즘 실험을 통한 진우도 갈대군락의 영양염 물질수지 산정)

  • RYU, Sung Hoon;LEE, In cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.545-552
    • /
    • 2018
  • In this study, we performed a mesocosm experiment to estimate the mass balance of Nutrients (DIN, DIP) in a phragmites australis community. We developed 4 mesocosm tanks which is available to circulate seawater with adjustable tide levels and flooding times. Each of the mesocosm tanks were filled with phragmites australis and sediment from Jinudo in Nakdong Estuary. We investigated DIN, DIP concentrations in three layers (seawater-phragmites australis-sediment) to estimate the mass balance of Nutrients and biomass. Growth rates were also investigated. The results can be summarized as follows. 1) In spring, rhizome biomass was higher than that of aerial stem by about 6.3~9.7%. In summer, aerial stem biomass was higher than that of rhizome about 19.2~21.2 %. 2) Th Growth rate of phragmites in Mesocosm Tank A was faster than in Mesocosm Tank D by about 2 to 3 times for aerial stem and rhizome. 3) The Concentration of nutrients (DIN, DIP) in each mesocosm Tank showed 2~3 % variance in spring and summer. 4) The biomass in each mesocosm varied by about 23 % which was higher than the concentration variance for each mesocosm tanks.

Extending torsional balance concept for one and two way asymmetric structures with viscous dampers

  • Amir Shahmohammadian;Mohammad Reza Mansoori;Mir Hamid Hosseini;Negar Lotfabadi Bidgoli
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.417-427
    • /
    • 2023
  • If the center of mass and center of stiffness or strength of a structure plan do not coincide, the structure is considered asymmetric. During an earthquake, in addition to lateral vibration, the structure experiences torsional vibration as well. Lateraltorsional coupling in asymmetric structures in the plan will increase lateral displacement at the ends of the structure plan and, as a result, uneven deformation demand in seismically resistant frames. The demand for displacement in resistant frames depends on the magnitude of transitional displacement to rotational displacement in the plan and the correlation between these two. With regard to the inability to eliminate the asymmetrical condition due to various reasons, such as architectural issues, this study has attempted to use supplemental viscous dampers to decrease the correlation between lateral and torsional acceleration or displacement in the plan. This results in an almost even demand for lateral deformation and acceleration of seismic resistant frames. On this basis, using the concept of Torsional Balance, adequate distribution of viscous dampers for the decrease of this correlation was determined by transferring the "Empirical Center of Balance" (ECB) to the geometrical center of the structure plan and thus obtaining an equal mean square value of displacement and acceleration of the plan edges. This study analyzed stiff and flexible torsional structures with one-way and two-way mass asymmetry in the Opensees software. By implementing the Particle Swarm Optimization (PSO) algorithm, the optimum formation of dampers for controlling lateral displacement and acceleration is determined. The results indicate that with the appropriate distribution of viscous dampers, not only does the lateral displacement and acceleration of structure edges decrease but the lateral displacement or acceleration of the structure edges also become equal. It is also observed that the optimized center of viscous dampers for control of displacement and acceleration of structure depends on the amount of mass eccentricity, the ratio of uncoupled torsional-to-lateral frequency, and the amount of supplemental damping ratio. Accordingly, distributions of viscous dampers in the structure plan are presented to control the structure's torsion based on the parameters mentioned.

The Effect of Balance Weight on the Lubrication and Friction Characteristics of Crankshaft System (크랭크샤프트계의 윤활 및 마찰 특성에 미치는 밸런스 웨이트의 영향)

  • Jo, Myeong-Rae;O, Dae-Yun;Han, Dong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1585-1590
    • /
    • 2002
  • This paper reports on the balance weight effect on the lubrication and friction characteristics of crankshaft system. To determine the main bearing loads, the crankshaft was treated as statically determinate system. Four and eight-balance weight crankshafts were considered, and minimum oil film thickness and friction loss were calculated. The main bearing loads were increased in the four-balance shaft due to the increasing of unbalanced rotating mass at No. 1 and 3 main bearing sides. The minimum oil film thickness of four-balance shaft became thinner than eight-balance, and friction loss was increased.

A New Runner System for Filling Balance in the Multi-Cavities Molds (다수 캐비티에서의 균형 충전을 위한 새로운 러너 시스템)

  • Jang, Min-Kyu;Park, Tae-Won;Jeong, Yeong-Deug
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.19-22
    • /
    • 2013
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalances have been observed. So, many studies for improving filling balance in the multi-cavities molds are worked up. In this study, the Melt-Buffer which is a new runner system for filling balance has been suggested, and a series of experiment about degree of filling balance in cavity-to-cavity was conducted in the mold with the Melt-Buffer. From the experiment, the filling balance was increased up to 5~6% by using the Melt-Buffer.

  • PDF

A New Runner System for Filling Balance in the Multi-Cavities Molds (다수 캐비티에서의 균형충전을 위한 새로운 러너 시스템)

  • Jang, Min-Kyu;Park, Tae-Won;Jeong, Yeong-Deug
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.95-98
    • /
    • 2008
  • Almost all injection molds have multi-cavity runner system for mass production, which are designed with geometrically balanced runner system in order to accomplish filling balance between cavity to cavity during processing. However, even though geometrically balanced runner is used, filling imbalances have been observed. So, many studies for improving filling balance in the multi-cavities molds are worked up. In this study, the Melt-Buffer which is a new runner system for filling balance has been suggested, and a series of experiment about degree of filling balance in cavity-to-cavity was conducted in the mold with the Melt-Buffer. From the experiment, the filling balance was increased up to $5^{\sim}6%$ by using the Melt-Buffer.

  • PDF

Theoretical Study on Snow Melting Process on Porous Pavement System by using Heat and Mass Transfer (열전달 및 물질전달을 이용한 공극 발열도로에서의 융설 해석에 대한 이론적 연구)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.1-10
    • /
    • 2015
  • PURPOSES : A finite difference model considering snow melting process on porous asphalt pavement was derived on the basis of heat transfer and mass transfer theories. The derived model can be applied to predict the region where black-ice develops, as well as to predict temperature profile of pavement systems where a de-icing system is installed. In addition, the model can be used to determined the minimum energy required to melt the ice formed on the pavement. METHODS : The snow on the porous asphalt pavement, whose porosity must be considered in thermal analysis, is divided into several layers such as dry snow layer, saturated snow layer, water+pavement surface, pavement surface, and sublayer. The mass balance and heat balance equations are derived to describe conductive, convective, radiative, and latent transfer of heat and mass in each layer. The finite differential method is used to implement the derived equations, boundary conditions, and the testing method to determine the thermal properties are suggested for each layer. RESULTS: The finite differential equations that describe the icing and deicing on pavements are derived, and we have presented them in our work. The framework to develop a temperature-forecasting model is successfully created. CONCLUSIONS : We conclude by successfully creating framework for the finite difference model based on the heat and mass transfer theories. To complete implementation, laboratory tests required to be performed.

Trends of Innovative Clinical Drug Development using AMS (Accelerator Mass Spectrometry) and $^{14}C$-micro Tracer (가속질량분석기(Accelerator mass spectrometry, AMS)와 극미량 $^{14}C$-동위원소를 이용한 혁신적 임상시험개발동향)

  • Cho, Kyung Hee;Lee, Hee Joo;Choie, Hyung Sik;Lee, Kyoung Ryul;Dueker, Stephen R.;Shin, Young G.
    • YAKHAK HOEJI
    • /
    • v.57 no.6
    • /
    • pp.412-419
    • /
    • 2013
  • Drug discovery and development processes are time consuming and costly endeavors. It has been reported that on average it takes 10 to 15 years and costs more than $ 1billion to bring a molecule from discovery to market. Compounds fail for various reasons but one of the significant reasons that accounts for failures in clinical trials is poor prediction/understanding of pharmacokinetics and drug metabolism in human. In an effort to improve the number of compounds that exhibit optimal absorption, distribution, metabolism, elimination (ADME), and pharmacokinetic properties in human, drug metabolism, pharmacokinetic scientists have been continually developing new technologies and compound screening strategies. Over the last few years, accelerator mass spectrometry (AMS) and its applications to preclinical/clinical pharmacokinetics and ADME studies have significantly increased, particularly for new chemical/biological entities that are difficult to support with conventional radiolabel studies. In this review, the application of AMS for micro-dosing, micro-tracer absolute bioavailability, mass balance and metabolite profiling studies will be discussed.

Estimation of Mass Error in the Simulation of Mixing of Instantaneously Released Pollutants (순간 유입된 오염물질의 혼합 모의 시 질량 오차 산정)

  • Lee, Myung Eun;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.475-483
    • /
    • 2008
  • 2D finite element model for analysis of transport of accidentally released pollutants in the flow was developed by SUPG method, and the mass balance of this model was checked though two example problems: line source and point source problem in the straight channel and unidirectional 2D flow field, respectively. All the test cases were simulated with both SUPG and conventional Galerkin method to compare the accuraccy of the numerical mass balance. Test results show that the model with SUPG can adequately conserve the released mass though simulation than the model using Galerkin method, so the developed model verified to be appropriate to solve this accidental mass release problem.