• 제목/요약/키워드: Mask R-CNN

검색결과 75건 처리시간 0.027초

ESRGAN과 Semantic Soft Segmentation을 이용한 객체 분할 (Object Segmentation Using ESRGAN and Semantic Soft Segmentation)

  • 윤동식;곽노윤
    • 사물인터넷융복합논문지
    • /
    • 제9권1호
    • /
    • pp.97-104
    • /
    • 2023
  • 본 논문은 ESRGAN(Enhanced Super Resolution GAN)과 SSS(Semantic Soft Segmentation)을 이용한 객체 분할에 관한 것이다. 본 논문의 연구진이 앞서 제안한 Mask R-CNN과 SSS를 이용한 객체 분할 방법의 분할 성능은 전반적으로 양호하지만 객체의 크기가 상대적으로 작은 경우 분할 성능이 저조해지는 문제점이 있었다. 본 논문은 이러한 문제점을 해소하기 위한 것이다. 제안된 방법은 Mask R-CNN을 통해 검출된 객체의 크기가 일정 기준치 이하인 경우, ESRGAN을 통해 초해상화를 수행한 후, SSS을 수행함으로써 소형 객체의 분할 성능을 개선하고자 한다. 제안된 방법에 따르면, 기존의 방법에 비해 크기가 작은 객체의 분할 특성을 좀 더 효과적으로 개선할 수 있음을 확인할 수 있었다.

압축센싱이 Mask R-CNN 기반의 객체검출에 미치는 영향 분석 (Analysis of the Effect of Compressed Sensing on Mask R-CNN Based Object Detection)

  • 문한솔;권혜민;이창교;서정욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.97-99
    • /
    • 2022
  • 산업과 기술력이 발전하면서 이에 대한 데이터의 양도 증폭하고 있으며 해당 기술력과 정보 전달에 대한 연구가 활발히 진행되고 있다. 따라서 본 논문에서는 데이터의 양을 줄이기 위해서 압축센싱을 활용하였고 해당 데이터가 객체 검출 알고리즘인 Mask R-CNN 모델에 미치는 영향을 분석하였다. 압축률이 높아질수록 이미지의 데이터 양이 줄어들면서 해상도가 낮아지는 것을 확인할 수 있었지만 객체 검출에서는 원본과 큰 차이를 보이지 않고 대부분의 객체가 검출되는 것을 확인하였다.

  • PDF

Mask Region-Based Convolutional Neural Network (R-CNN) Based Image Segmentation of Rays in Softwoods

  • Hye-Ji, YOO;Ohkyung, KWON;Jeong-Wook, SEO
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권6호
    • /
    • pp.490-498
    • /
    • 2022
  • The current study aimed to verify the image segmentation ability of rays in tangential thin sections of conifers using artificial intelligence technology. The applied model was Mask region-based convolutional neural network (Mask R-CNN) and softwoods (viz. Picea jezoensis, Larix gmelinii, Abies nephrolepis, Abies koreana, Ginkgo biloba, Taxus cuspidata, Cryptomeria japonica, Cedrus deodara, Pinus koraiensis) were selected for the study. To take digital pictures, thin sections of thickness 10-15 ㎛ were cut using a microtome, and then stained using a 1:1 mixture of 0.5% astra blue and 1% safranin. In the digital images, rays were selected as detection objects, and Computer Vision Annotation Tool was used to annotate the rays in the training images taken from the tangential sections of the woods. The performance of the Mask R-CNN applied to select rays was as high as 0.837 mean average precision and saving the time more than half of that required for Ground Truth. During the image analysis process, however, division of the rays into two or more rays occurred. This caused some errors in the measurement of the ray height. To improve the image processing algorithms, further work on combining the fragments of a ray into one ray segment, and increasing the precision of the boundary between rays and the neighboring tissues is required.

DeepLabCut과 Mask R-CNN 기반 반려동물 행동 분류 설계 (Design of Pet Behavior Classification Method Based On DeepLabCut and Mask R-CNN)

  • 권주영;신민찬;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.927-929
    • /
    • 2021
  • 최근 펫팸족(Pet-Family)과 같이 반려동물을 가족처럼 생각하는 가구가 증가하면서 반려동물 시장이 크게 성장하고 있다. 이러한 이유로 본 논문에서는 반려동물의 객체 식별을 통한 객체 분할과 신체 좌표추정에 기반을 둔 반려동물의 행동 분류 방법을 제안한다. 이 방법은 CCTV를 통해 반려동물 영상 데이터를 수집한다. 수집된 영상 데이터는 반려동물의 인스턴스 분할을 위해 Mask R-CNN(Region Convolutional Neural Networks) 모델을 적용하고, DeepLabCut 모델을 통해 추정된 신체 좌푯값을 도출한다. 이 결과로 도출된 영상 데이터와 추정된 신체 좌표 값은 CNN(Convolutional Neural Networks)-LSTM(Long Short-Term Memory) 모델을 적용하여 행동을 분류한다. 본 모델을 바탕으로 행동을 분석 및 분류하여, 반려동물의 위험 상황과 돌발 행동에 대한 올바른 대처를 제공할 수 있는 기반을 제공할 것이라 기대한다.

Comparing U-Net convolutional network with mask R-CNN in Nuclei Segmentation

  • Zanaty, E.A.;Abdel-Aty, Mahmoud M.;ali, Khalid abdel-wahab
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.273-275
    • /
    • 2022
  • Deep Learning is used nowadays in Nuclei segmentation. While recent developments in theory and open-source software have made these tools easier to implement, expert knowledge is still required to choose the exemplary model architecture and training setup. We compare two popular segmentation frameworks, U-Net and Mask-RCNN, in the nuclei segmentation task and find that they have different strengths and failures. we compared both models aiming for the best nuclei segmentation performance. Experimental Results of Nuclei Medical Images Segmentation using U-NET algorithm Outperform Mask R-CNN Algorithm.

Impacts of label quality on performance of steel fatigue crack recognition using deep learning-based image segmentation

  • Hsu, Shun-Hsiang;Chang, Ting-Wei;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.207-220
    • /
    • 2022
  • Structural health monitoring (SHM) plays a vital role in the maintenance and operation of constructions. In recent years, autonomous inspection has received considerable attention because conventional monitoring methods are inefficient and expensive to some extent. To develop autonomous inspection, a potential approach of crack identification is needed to locate defects. Therefore, this study exploits two deep learning-based segmentation models, DeepLabv3+ and Mask R-CNN, for crack segmentation because these two segmentation models can outperform other similar models on public datasets. Additionally, impacts of label quality on model performance are explored to obtain an empirical guideline on the preparation of image datasets. The influence of image cropping and label refining are also investigated, and different strategies are applied to the dataset, resulting in six alternated datasets. By conducting experiments with these datasets, the highest mean Intersection-over-Union (mIoU), 75%, is achieved by Mask R-CNN. The rise in the percentage of annotations by image cropping improves model performance while the label refining has opposite effects on the two models. As the label refining results in fewer error annotations of cracks, this modification enhances the performance of DeepLabv3+. Instead, the performance of Mask R-CNN decreases because fragmented annotations may mistake an instance as multiple instances. To sum up, both DeepLabv3+ and Mask R-CNN are capable of crack identification, and an empirical guideline on the data preparation is presented to strengthen identification successfulness via image cropping and label refining.

Tack Coat Inspection Using Unmanned Aerial Vehicle and Deep Learning

  • da Silva, Aida;Dai, Fei;Zhu, Zhenhua
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.784-791
    • /
    • 2022
  • Tack coat is a thin layer of asphalt between the existing pavement and asphalt overlay. During construction, insufficient tack coat layering can later cause surface defects such as slippage, shoving, and rutting. This paper proposed a method for tack coat inspection improvement using an unmanned aerial vehicle (UAV) and deep learning neural network for automatic non-uniform assessment of the applied tack coat area. In this method, the drone-captured images are exploited for assessment using a combination of Mask R-CNN and Grey Level Co-occurrence Matrix (GLCM). Mask R-CNN is utilized to detect the tack coat region and segment the region of interest from the surroundings. GLCM is used to analyze the texture of the segmented region and measure the uniformity and non-uniformity of the tack coat on the existing pavements. The results of the field experiment showed both the intersection over union of Mask R-CNN and the non-uniformity measured by GLCM were promising with respect to their accuracy. The proposed method is automatic and cost-efficient, which would be of value to state Departments of Transportation for better management of their work in pavement construction and rehabilitation.

  • PDF

Mask R-CNN을 이용한 항공 영상에서의 도로 균열 검출 (Crack Detection on the Road in Aerial Image using Mask R-CNN)

  • 이민혜;남광우;이창우
    • 한국산업정보학회논문지
    • /
    • 제24권3호
    • /
    • pp.23-29
    • /
    • 2019
  • 기존의 균열 검출 방법은 많은 인력과 시간, 비용이 소모되는 문제점이 있다. 이러한 문제를 해결하고자 차량이나 드론을 이용하여 취득한 영상에서 균열 정보를 파악하고 정보화하는 자동검출시스템이 요구되고 있다. 본 논문에서는 드론으로 촬영한 도로 영상에서의 균열 검출 연구를 진행한다. 획득한 항공영상은 전처리와 라벨링(Labeling) 작업을 통해 균열의 형태정보 데이터셋(data set)을 생성한다. 생성한 데이터셋을 Mask R-CNN(regions with convolution neural network) 딥러닝(deep learning) 모델에 적용하여 다양한 균열 정보가 학습된 새로운 모델을 획득하였다. 획득 모델을 이용한 실험 결과, 제시된 항공 영상에서 균열을 평균 73.5%의 정확도로 검출하였으며 특정 형태의 균열 영역도 예측하는 것을 확인할 수 있었다.

Comparison of Multi-Label U-Net and Mask R-CNN for panoramic radiograph segmentation to detect periodontitis

  • Rini, Widyaningrum;Ika, Candradewi;Nur Rahman Ahmad Seno, Aji;Rona, Aulianisa
    • Imaging Science in Dentistry
    • /
    • 제52권4호
    • /
    • pp.383-391
    • /
    • 2022
  • Purpose: Periodontitis, the most prevalent chronic inflammatory condition affecting teeth-supporting tissues, is diagnosed and classified through clinical and radiographic examinations. The staging of periodontitis using panoramic radiographs provides information for designing computer-assisted diagnostic systems. Performing image segmentation in periodontitis is required for image processing in diagnostic applications. This study evaluated image segmentation for periodontitis staging based on deep learning approaches. Materials and Methods: Multi-Label U-Net and Mask R-CNN models were compared for image segmentation to detect periodontitis using 100 digital panoramic radiographs. Normal conditions and 4 stages of periodontitis were annotated on these panoramic radiographs. A total of 1100 original and augmented images were then randomly divided into a training (75%) dataset to produce segmentation models and a testing (25%) dataset to determine the evaluation metrics of the segmentation models. Results: The performance of the segmentation models against the radiographic diagnosis of periodontitis conducted by a dentist was described by evaluation metrics(i.e., dice coefficient and intersection-over-union [IoU] score). MultiLabel U-Net achieved a dice coefficient of 0.96 and an IoU score of 0.97. Meanwhile, Mask R-CNN attained a dice coefficient of 0.87 and an IoU score of 0.74. U-Net showed the characteristic of semantic segmentation, and Mask R-CNN performed instance segmentation with accuracy, precision, recall, and F1-score values of 95%, 85.6%, 88.2%, and 86.6%, respectively. Conclusion: Multi-Label U-Net produced superior image segmentation to that of Mask R-CNN. The authors recommend integrating it with other techniques to develop hybrid models for automatic periodontitis detection.

콘크리트 구조체 균열 탐지에 대한 Mask R-CNN 알고리즘 적용성 평가 (Application of Mask R-CNN Algorithm to Detect Cracks in Concrete Structure)

  • 배병규;최용진;윤강호;안재훈
    • 한국지반공학회논문집
    • /
    • 제40권3호
    • /
    • pp.33-39
    • /
    • 2024
  • 구조물의 상태를 파악하기 위한 균열조사는 정밀안전 진단에 필수적인 검사 항목이다. 그러나 육안으로 이루어지는 균열조사 방식은 현장 상황의 변화에 따라 주관적으로 수행될 수 있다. 이러한 육안검사의 한계를 극복하기 위해 본 연구에서는, ResNet, FPN, Mask R-CNN을 백본(Backbone), 넥(Neck), 헤드(head)로 구성한 합성곱 신경망을 바탕으로, 이미지 데이터에서의 콘크리트 균열 탐지를 자동화하고. 그 성능을 IoU 값을 바탕으로 분석하였다. 해석에 사용된 데이터는 총 1,203개의 이미지 데이터로 구성하였으며, 이 중 70%를 훈련(Training)에, 20%를 검증(Validation)에, 그리고 10%의 데이터를 시험(Testing)에 사용하였다. 시험 결과의 평균 IoU값은 95.83%로 산정되었고, 또한 이미지 내 균열이 전혀 탐지되지 않는 경우는 존재하지 않아, 본 연구에 가정한 모델이 콘크리트의 균열 탐지를 성공적으로 수행하는 것을 확인하였다.