• Title/Summary/Keyword: Mask Layer

Search Result 269, Processing Time 0.023 seconds

A Study on AK Shadow Mask with Fe-Ni Alloy Coating for Flat CPTs

  • Kim, Sang-Mun
    • Journal of Information Display
    • /
    • v.5 no.4
    • /
    • pp.27-30
    • /
    • 2004
  • This paper investigates the effects of coating such as Invar (Fe-36% Ni), Fe-Ni Alloys and $WO_3$ on the doming property of aluminum killed (AK) shadow masks, which may be used for flat CPTs. Invar and Fe-Ni Alloys are deposited on AK shadow mask in plasma atmosphere and annealed. $WO_3$ is screen-printed on the deposited layer. The coating is observed to cause a decrease in the doming property of the shadow masks due to their lower thermal expansion coefficients and anti-doming properties.

Effective Morphological Layer Segmentation Based on Edge Information for Screen Image Coding (스크린 이미지 부호화를 위한 에지 정보 기반의 효과적인 형태학적 레이어 분할)

  • Park, Sang-Hyo;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.38-47
    • /
    • 2013
  • An image coding based on MRC model, a kind of multi-layer image model, first segments a screen image into foreground, mask, and background layers, and then compresses each layer using a codec that is suitable to the layer. The mask layer defines the position of foreground regions such as textual and graphical contents. The colour signal of the foreground (background) region is saved in the foreground (background) layer. The mask layer which contains the segmentation result of foreground and background regions is of importance since its accuracy directly affects the overall coding performance of the codec. This paper proposes a new layer segmentation algorithm for the MRC based image coding. The proposed method extracts text pixels from the background using morphological top hat filtering. The application of white or black top hat transformation to local blocks is controlled by the information of relative brightness of text compared to the background. In the proposed method, the boundary information of text that is extracted from the edge map of the block is used for the robust decision on the relative brightness of text. Simulation results show that the proposed method is superior to the conventional methods.

Development of Micro-machined Heat Flux Sensor by using MEMS technology (MEMS를 이용한 미세 열유속센서의 개발)

  • Yang, Hoon-Cheul;Song, Chul-Hwa;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1364-1369
    • /
    • 2004
  • New method for the design, fabrication, and calibration of micro-machined heat flux sensor has been developed. Two types of micro-machined heat flux sensor having different thicknesses of the thermal-resistance layer are fabricated using the MEMS technique. Photo-resist patterning using a chrome mask, bulk-etching and copper-nickel sputtering using a shadow mask are applied to make heat flux sensors, which are calibrated in the convection-type heat flux calibration facility. The sensitivity of the device varies with thermal-resistance layer, and hence can be used to measure the heat flux in heat-transfer phenomena.

  • PDF

A Two-Layer Steganography for Mosaic Images

  • Horng, Ji-Hwei;Chang, Chin-Chen;Sun, Kun-Sheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3298-3321
    • /
    • 2021
  • A lot of data hiding schemes have been proposed to embed secret data in the plain cover images or compressed images of various formats, including JPEG, AMBTC, VQ, etc. In this paper, we propose a production process of mosaic images based on three regular images of coffee beans. A primary image is first mimicked by the process to produce a mosaic cover image. A two-layer steganography is applied to hide secret data in the mosaic image. Based on the low visual quality of the mosaic cover image, its PSNR value can be improved about 1.5 dB after embedding 3 bpp. This is achieved by leveraging the newly proposed polarized search mask and the concepts of strong embedding and weak embedding. Applying steganography to the mosaic cover images is a completely new idea and it is promising.

Effects of Gas Chemistries on Poly-Si Plasma Etching with I-Line and DUV Resist (I-Line과 DUV Resist에서 Poly-Si 플라즈마 식각시 미치는 개스의 영향)

  • 신기수;김재영
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.155-160
    • /
    • 1998
  • It is necessary to use Arc layer and DUV resist to define 0.25 $\mu \textrm{m}$ line and space for 256 MDRAM devices. Poly-Si etching with Arc layer and different resists has been performed in a TCP-9408 etcher with variation of gas chemistries; $Cl_2/O_2, Cl_2/N_2, Cl_2$/HBr . DUV resist causes more positive etch profile and CD gain compared to I-line resist because the sidewall passivation is more stimulated by increasing polymerization through the loss of resist. When Arc layer is applied, CD hain also increases due to the polymeric mask formed after thching Arc layer. From the point of gas chemistry effects, the etch profile and CD gain is not improved using $Cl_2/O_2$ gas, since polymerization is accelerated in this gas. however, the vertical profile and less CD gain is obtained using $Cl_2$/HBr gas. Furthermore, HBr gas is very effective to suppress the difference of profile and CD variation between dense pattern and isolated pattern by minimizing non-uniformity of side wall passivation with pattern density.

  • PDF

Effects of Heating and UV Sterilization of Repeatedly Reused Face Masks on Inhalation Resistance and Fiber Structure (보건용 마스크 재사용을 위한 가열과 자외선 살균이 마스크의 안면부 흡기저항 및 섬유구조에 미치는 영향)

  • Jung, Jae-Yeon;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.23 no.3
    • /
    • pp.406-414
    • /
    • 2021
  • This study aimed to evaluate the inhalation resistance(IR) and fiber structure of disposable masks when exposed to repeated heating and ultraviolet(UV) sterilization. The experiments consisted of a lab-scale and a field test. For the lab-scale test, KF94 and N95 masks were selected and a trial was composed of three repetitions of an 80-min sterilization. For the field test, a subject participated over four days, of which a KF94 was worn without sterilization, and the same trial was conducted during the next four days with daily sterilization. The results showed that the IR of the KF94 mask(9.5 Pa) gradually increased according to the sterilization up to the second repetition(15.6 Pa) but decreased at the third treatment(9.7 Pa). However, the N95 mask did not showany tendency of IR during the repetitions. Microscope photos showed several warped or blackened fibers in the stiffener layer after the repeated sterilization. After wearing a KF94 mask for four consecutive days, its IR decreased until the three days but increased the fourth day, whereas another KF94 mask with sterilization showed an increase in IR for the four days. In the microscope-photos after the consecutive four days, outside fibers and stiffener layers were warped or became less dense. In summary, the IR of the KF94 mask slightly increased through the three~four rounds of heating and UV sterilizations, but the fiber structures were not significantly deformed by the repeated sterilization. To reduce discarded mask waste, the repeated sterilization of masks can be recommended.

Evaluation of the Filtration Efficiency and Facial Inhalation Resistance of Various Commercial Masks (시중에 판매되는 다양한 비인증 마스크의 분진 포집효율과 안면부 흡기저항 평가)

  • Kang, Sohyun;Kim, Soomin;Yoon, Chung Sik;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.3
    • /
    • pp.292-301
    • /
    • 2021
  • Objectives: Wearing medical masks has been recommended since the declaration of coronavirus disease-19 (COVID-19) as a pandemic disease. Certified medical masks are evaluated according to filtration efficiency and facial inhalation resistance. However, some people use non-certified common masks. This study aimed to evaluate various non-certified commercial masks based on the certification criteria for medical masks. Methods: Twenty mask products (three anti-droplet, three disposable dental, eight fashion, three cotton, and three children's masks) were selected. For performance evaluation, filtration efficiency and facial inhalation resistance tests were conducted. The evaluation method followed the certification method for KF-certified masks of the Ministry of Food and Drug Safety (MFDS) and the N95 respirator of the National Institute for Occupational Safety and Health (NIOSH). Results: None of the 20 masks met the KF94 certification standard set by the MFDS. Four and three masks respectively met the KF80 certification standard and the N95 standard of NIOSH. Filtration efficiency was significantly higher in three-layer masks than in single layer masks. Pleated-type masks had higher filtration efficiency than cone-type masks. There was no correlation between the structure of masks and facial inhalation resistance. Conclusion: While no masks complied with the KF94 certification standard, a few masks met the KF80 and the N95 certification standards of NIOSH. Although some people wear non-certified commercial masks, protection from aerosols is not guaranteed by such masks. Evaluation of the protection efficiency of non-certified mask against microbiological infection is needed for the prevention of infectious disease.

Effects of the Nanometer-sized Bismuth Oxide Coating on Shadow Mask

  • Kim, Sang-Mun;Koh, Nam-Je
    • Journal of Information Display
    • /
    • v.6 no.4
    • /
    • pp.40-44
    • /
    • 2005
  • Nanometer-sized bismuth oxide with a diameter of about 80 nm was used as a new electron reflection material in a 29" Real Flat CPT. This bismuth oxide was well dispersed over pH8 in slurry. Spray coating was performed clearly and uniformly and was ensured that there was no clogging of shadow mask hole. Coating thickness was expressed to the brightness of chromaticity for the sprayed layer and was also well controlled during the spraying process. Doming was improved by about 10% in spite of the similar coating weight in comparison with the average 3.5 ${\mu}m$ of the conventional bismuth oxide.

Fabrication of Glass Etching Mask using Various Polymers and Metals and Test of it in Glass Micromaching (폴리머와 금속을 이용한 유리 식각 마스크의 저작 및 이를 이용한 유리 가공)

  • Jeon, Do-Han;Sim, Woo-Young;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.268-270
    • /
    • 2004
  • This paper reports a novel masking method with various mask materials for wet etching of glass. Various mask materials such as Cr/Au, Ti/Au, Polyimide and thick SU-8 photoresist were investigated for borosilicate glass (Borofloat33) etching in concentrated hydrofluoric acid (48% HF). Polyimide and thick SU-8 photoresist are not suitable as masking material due to its poor adhesion to glass surfaces. Titanium has good adhesion is suitable as the first layer to make multi-protective layers. The best protection was obtained with a combination of Ti/Au, polyimide and Ti/Au as masking material with etch depth of $350{\mu}m$ achieved.

  • PDF

Anisotropic Silicon Etching Using $RuO_2$ Thin Film as a Mask Layer by TMAH Solution ($RuO_2$를 마스크 층으로 TMAH에 의한 이방성 실리콘 식각)

  • 이재복;오세훈;홍경일;최덕균
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1021-1026
    • /
    • 1997
  • RuO2 thin film has reasonably good conductivity and stiffness and it is thought to substitute for the cantilever beam made up of Pt and Si3N4 double layers in microactuators. Therefore, anisotopic Si etching was performed using RuO2 thin film as a mask layer in 25 wt. % TMAH water solution. In the etching temperature ranging from 6$0^{\circ}C$ to 75$^{\circ}C$, the etch rates of all the crystallographic directions increased linearly as the etching temperature increased. The etch rate ratio(selectivity) of [111]/[100] which varied from 0.08 to 0.14, was not sensitive to temperature. The activation energies for [110] direction, [100] direction and [111] direction were 0.50, 0.66 and 1.04eV, respectively. RuO2 cantilever beam with a clean surface was formed at the etching temperatures of 6$0^{\circ}C$ and $65^{\circ}C$. But the damages due to formation of pin holes on RuO2 surface were observed beyond 7$0^{\circ}C$. The tensile stress of RuO2 thin films caused the cantilever bending upward. As a result, it was demonstrated that the formation of conducting oxide RuO2 cantilever beam which can replace the role of an electrode and supporting layer could be possible by TMAH solution.

  • PDF