• Title/Summary/Keyword: Masan-Jinhae Bay

Search Result 55, Processing Time 0.021 seconds

Marine Ecosystem Response to Nutrient Input Reduction in Jinhae Bay, South Korea

  • Oh, Hyun-Taik;Lee, Won-Chan;Koo, Jun-Ho;Park, Sung-Eun;Hong, Sok-Jin;Jung, Rae-Hong;Park, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.819-827
    • /
    • 2006
  • We study on the dynamic interaction with a simulated physical-biological coupled model response to nutrient reduction scenario in Jinhae Bay. According to the low relative errors, high regression coefficients of COD and DIN, and realistic distribution in comparison to the observation, our coupled model could be applicable for assessing the marine ecosystem response to nutrient input reduction in Jinhae Bay. Due to the new construction and expansion of sewage treatment plant from our government, we reduce 50% nutrient inputs near Masan Bay and sewage treatment plant. COD achieves Level II in Korea standard of the water quality from the middle of the Masan Bay to all around Jinhae Bay except the inner Masan Bay remaining at Level III. When our experiment reduces 50% nutrient inputs near Masan Bay and Dukdong sewage treatment plant simultaneously, COD decreases to about 0.1-1.2 mg/L $(128^{\circ}30'{\sim}128^{\circ}40'\;E,\;35^{\circ}05'{\sim}35^{\circ}11'\;N)$. The COD from the middle of the Masan Bay to Jinhae Bay achieves Level II.

Assessment of the Marine Environment in Masan-Jinhae Bay of Korea in Relation to Algal Blooms

  • Lee, Moon-Ock;Kim, Pyeong-Joo;Moon, Jin-Han
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.7-24
    • /
    • 2008
  • Masan-Jinhae Bay, in Korea, is known for its frequent algal bloom outbreaks. This study was conducted in order to examine the environmental characteristics of the area, with the aim of identifying indicators that could be used to speculate about future algal blooms. The water temperatures and salinities in Haengam Bay, one of the small inner bays within Jinhae, appeared to re relatively higher than those in Masan and Jinhae bays, across most seasons. Furthermore, stratification begins to develop in all three regions from spring to summer as a result of the local heating effects and an increase in the efficient from the surrounding land. As a result, anoxic conditions appear near the bottom layer of the bay, leading to the deterioration of water quality, which has been identified as one of the causes of bloom outbreaks. Compared to Haengam and Jinhae bays, concentrations of DIN and DIP were remarkably higher in Masan Bay. However, the mean ratio of DIN to DIP was 3.3$\sim$13.6 in all three regions throughout the year, suggesting that nitrogen can function as a growth-limiting factor for phytoplankton. The results of mathematical models showed that cumulative organic pollutants may be a trigger for direct algal bloom occurrences, since residual tidal currents appeared to be less than $3\;cm\;\cdot\;s^{-1}$. Furthermore, computed DO concentrations in the four small inner bays of Jinhae during the summer appeared to be $3\;cm\;\cdot\;l^{-1}$ indicating a hypoxic state. Likewise, computed Chl-a concentrations turned out to be more than $0.01\;mg\;\cdot\;l^{-1}$, indicating eutrophication across most seasons. Based on the overall results, Masan-Jinhae Bay appeared to possess a very high potential for algal bloom outbreaks at anytime during the year.

Tide and tidal current around the sea route of Jinhae and Masan passages (진해 및 마산항로 주변해역의 조석·조류특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.1
    • /
    • pp.45-56
    • /
    • 2021
  • In order to understand the tide and current around the sea route of Jinhae and Masan passages, tide measurement and 2D numerical model experiments of tidal current and residual flow were carried out. Tide is composed of 84% of semi-diurnal tide, 11% of diurnal tide and 4% of shallow water tide, respectively. Phase lags of the major components for the tide around the study area have little differences. The flows are reversing on the whole, but have rotational form around Jamdo Island, south of Masan passage in spring tide and Ungdo Island, north of Masan passage in middle and neap tide. Current flows the speed of 50 cm/s in the sea areas near small islands, 5 cm/s in Jinhae harbor, Hangam bay and near Jinhae industrial complex and 20-30 cm/s in Jinhae passage, Budo channel and Masan passage. Tide-induced topographical eddies are formed near small islands, but few eddies exist and the flow rate of less than 5 cm/s tidal residual current formed in Jinhae and Masan passages. The flows in Jinhae and Masan passage give a good condition for a passage into Jinhae and Masan harbor.

Water Quality Variations in Jinhae Bay by Dredging & Operating the Sewage Disposal Plant (마산만 준설사업 및 하수처리장 가동에 따른 진해만의 수질변동)

  • YOON SUK-JIN;LEE IN-CHEOL
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.117-122
    • /
    • 2004
  • This study investigates the spatial and temporal distribution characteristics and relationships among water quality parameters, which based on 6 years' data(from 1989 to 1994) measured at 16 stations on Jinhae Bay. The results of these analysis, monthly variations range between surface and bottom layer of water quality had a tendency to increase and decrease, and appeared to be at the maximum value in August. The relationships between concentration of COD ana nutrients(DIN and DIP), which obtained by correlation analysis of water quality, were shown $85\%$ and $74\%$, respectively. Using the cluster analysis to develop the division of the sea basin by the dendrogram, before and after dredging of Masan bay and operating a sewage disposal plant, the variation characteristics of water quality of Jinhae Bay were discussed. Through it, we can see the serious pollution of northen sea basin of Jinhae Bay(B2) although dredging Masan bay and operating the sewage disposal plant. As the results, it doesn't appear the improvement effect of water quality in spite of carrying out the effort of water quality improvement.

  • PDF

Protists in hypoxic waters of Jinhae Bay and Masan Bay, Korea, based on metabarcoding analyses: emphasizing surviving dinoflagellates

  • Jin Hee Ok;Hae Jin Jeong;Hee Chang Kang;Ji Hyun You;Sang Ah Park;Se Hee Eom;Jin Kyeong Kang;Yeong Du Yoo
    • ALGAE
    • /
    • v.38 no.4
    • /
    • pp.265-281
    • /
    • 2023
  • Hypoxia can indeed impact the survival of protists, which play a crucial role in marine ecosystems. To better understand the protistan community structure and species that can thrive in hypoxic waters, we collected samples from both the surface and bottom waters during the hypoxic period in Jinhae and Masan Bays and the non-hypoxic period in Jinhae Bay. Subsequently, we utilized metabarcoding techniques to identify the protistan species. During hypoxia, with dissolved oxygen concentrations of 0.8 mg L-1 in Jinhae Bay and 1.8 mg L-1 in Masan Bay within the bottom waters, the phylum Dinoflagellata exhibited the highest amplicon sequence variants richness among the identified protist phyla. Following the Dinoflagellata, Ochrophyta and Ciliophora also displayed notable presence. In hypoxic waters of Jinhae and Masan Bays, we identified a total of 36 dinoflagellate species that exhibited various trophic modes. These included one autotrophic species, 14 mixotrophic species, 9 phototrophic species with undetermined trophic modes (either autotrophic or mixotrophic), 2 kleptoplastidic species, and 10 heterotrophic species. Furthermore, the hypoxic bottom water exhibited a greater number of heterotrophic dinoflagellate species compared to the non-hypoxic surface water within the same water column or the non-hypoxic bottom water. Therefore, feeding by mixotrophic and heterotrophic dinoflagellates may be partially responsible for their dominance in terms of the number of species surviving in hypoxic waters. This study not only introduces the initial documentation of 26 dinoflagellate species surviving in hypoxic conditions but also establishes a foundation for a more comprehensive understanding of the ecophysiology of dinoflagellates in hypoxic marine environments.

Heavy Metals in the Sea off Jinhae and Masan During Winter Period (동계 진해 마산해역의 중금속)

  • Kwak, Hi-Sang;Lee, Jong Wha
    • 한국해양학회지
    • /
    • v.10 no.1
    • /
    • pp.7-16
    • /
    • 1975
  • A survey was conducted to determine the concentrations of six heavy metals, namely Fe, Cu, Zn, Pb, Hg and Cd, in the sea water off Jinhae and Masan during January and February, 1974. The contents of Fe, Cu and Zn were the highest in Masan Bay, and decreased in order of Haengam Bay, Ungcheon area and Ungdong area. The Fe concentrations showed significant differences particulary in Masan Bay by depth. All of these characteristic would contribute to the assumption that the pollution might have originated from Masan. Pb contents varied in the range of 1.0-7.0 $\mu\textrm{g}$/l, but Haengam water contained the lowest concentrations of all areas surveyed. The contents of Hg and Cd showed 0.1 $\mu\textrm{g}$/l through survey regions respectively.

  • PDF

The Prediction of Red Tides in Jinhae Bay using a Discriminant Function (판별함수에 의한 진해만 적조예측)

  • 이문옥;백상호
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.8-19
    • /
    • 1998
  • The dicriminant function was introduced to understand the cause and establish the prediction method of red tides occurring In Jinhae Bay. Korea. Two sea re91ons of Masan and Haengam Bays and Dang- dong and Wonmun Bays had different types of causes and patterns for red tides. In Masan and Haengam Bays, the red tides concentrically occurred during June and September. For example, in .lune the red tides occurred from physical and meteorological factors, which are related to the stratification and the increase in planktons. However in August the red tides occurred from the water quality environment, based on these conditoins. Futhermore, in September the red tides were caused by the balance between the meteorological and water quality environmental factors. In contrast to those, In Dangdong and Won-mun Bays, the red tides mainly occurred during July and October and the frequency of occurrence was not as much as Masan and Haengam Bays. Especially, in August and September most meteorological and physical factors or water quality environmental factors appeared to contribute to the occurrence of red tides. This indicates that red tides do not easily occur as they are controlled by various environmental factors particularly in these regions The discriminant functions were applied to predict red tides which they were actually occurred In Masan and Haengam Bays in June. The results showed that they were successful for the prediction of red tide at Haengam Bay but not at Masan Bay. The reason for their discrepancy in Masan Bay could have come from using a slight higher value of pH or COD in May, instead of its value in June.

  • PDF

The Determining factors and Temporal and Spatial Characteristics of Chemical Oxygen Demand in Jinhae Bay (진해만에 있어서의 COD의 시공간적인 특성 및 결정인자)

  • 김종구;조은일
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.189-195
    • /
    • 1999
  • Determining factors and temporal & spatial characteristics of COD(Chemical Oxygen Demand) at the sea surface in Jinhae bay have been examined by using seasonal data, taken at twenty six stations over the whole bay during 1989~1994 by NERDA. The data have been analyzed in terms of long term means, anomalously large values. Jinhae bay is divided into three regions based on the time mean : mouth of Jinhae bay, inner sea of Masan bay, western sea of Jinhae bay called region 1,2 and 3, respectively. The horizontal distribution of the long term mean of COD at each station is similar to those of nitrogen and phosphorus. Characteristics of whole mean variation in the year shows high range of variation in region 2. It was appear to decreases every year in whole trend. Factors determining seasonal variation in whole COD mean are relative to salinity and nutrient, affected by precipitation in summer. Spatial variation shows high range of fluctuation in region 2 compare to other region. Factors determining of spatial variation of COD was appear to nutrient, affected by pollutant load of land area and bottom sediment. The long term mean of COD at each station is closely related with thats of nutrients. The correlation coefficient between COD and nitrogen, phosphate phosphorus was found to be high as 0.75, 0.78, respectively. Anomalously large COD was observed 14 times at 6 stations. These stations are located in inner sea of Masan bay(Region 2) and Songjeong bay(Region 1). The seasonal frequency of the observed anomalous COD is large in April, and other seasons are much the same.

  • PDF

A Study on the Numerical Model of Current of Strafication Considering the Topographic Heat Accumulation Effect in the Coastal Area (해역에서의 지형성 저열효과를 고려한 성층유동 수치모델에 관한 연구)

  • Yoon, Jung-Sung;Kim, Myoung-Kyu;Han, Dong-Jing;Kim, Ga-Ya
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.61-68
    • /
    • 2008
  • In Jinhae-Masan bay, a typical semi-dosed bay in Korea, the water quality is severely deteriorated because of the dosed topographic character and the inflow of nutrients from the land. There have been attempts to apply a water quality model dealing with the entrophication phenomenon and the oxygen-deficient mass in the bay in summer, but there have been few examples of models that have considered the phenomenon of stratification in the proper order, and then it is performed the model of water quality. Therefore, this study collected and analyzed the pre-observed water temperature data from Jinhae-Masan bay in summer and then constructed a density model using the topographic heat accumulation effect and inflow from the river to examine the temperature stratification. The simulation results show that this model could demonstrate the temperature stratification in the Jinhae-Masan bay very well.