• 제목/요약/키워드: Martensitic Stainless Steel

검색결과 71건 처리시간 0.024초

스테인리스강의 브레이징 특성 (Brazing Process of Stainless Steel)

  • 홍성철;박준규;오주희;이재훈;김원중;정재필
    • Journal of Welding and Joining
    • /
    • 제29권6호
    • /
    • pp.40-44
    • /
    • 2011
  • Brazing of a stainless steel was described in this article. Brazing is a joining technology without melting a substrate and joining temperature is higher than $450^{\circ}C$. Brazing can be broadly applicable across industries. In particular, brazing of stainless steel is widely used in aircraft parts, car engines, heat exchangers, etc. due to its excellent strength, corrosion resistance and other suitable characteristics. Characteristics of the stainless steel depend on their classification like austenitic, ferritic and martensitic stainless steels. In addition, there are many processes in brazing and various parameters such as brazing heat source, filler metals, joint design, etc. Therefore, it is necessary to know basic knowledge about brazing to achieve good brazing joint. Accordingly, properties of stainless steel and design of brazing joint and related process were described in this article.

420J2마르텐사이트 스테인레스강의 최종경도에 미치는 열처리조건의 영향 (Effect of Heat Treatments on the Final Hardness of STS 420J2 Martensitic Stainless Steel)

  • 김기돈;성장현
    • 열처리공학회지
    • /
    • 제7권3호
    • /
    • pp.175-183
    • /
    • 1994
  • The effect of batch annealing conditions and austenitizing temperatures on the hardness and microstructural factors were examined by using 420J2 martensitic stainless steel. In spite of the similler hardness after batch annealing, the difference in hardness at the same austenitizing temperature was caused by changes in dissolved carbon during batch annealing. The highest hardness of the specimen was obtained at the batch annealing temperature of $820^{\circ}C$ and austenitizing temperature of $1050^{\circ}C$. The main factor affecting the final hardness of the cold annealed 420J2 specimen was proved to the austenitizing temperature rather than batch annealing temperature.

  • PDF

The Effects Nitrogen percentage and Processing Time on the AISI 420 martensitic stainless steel during Plasma nitriding

  • 이인섭
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.289-290
    • /
    • 2015
  • In this experiment, nitriding treatment has been performed at $400^{\circ}C$ with various $N_2$ content and with changing processing time on AISI 420 martensitic stainless steel to investigate the expanded martensite layer (${\alpha}^{\prime}_N$ layer) formation behavior. Nitriding was implemented with changing $N_2$ content from 10% to 25% for 15 hrs and processing time was changed from 4hr to 15hr at 25% $N_2$ content. After treatment, the behavior of the ${\alpha}^{\prime}_N$ layer was investigated by optical microscopy, X-ray diffraction, and micro-hardness testing. Potentiodynamic polarization test was also used to evaluate the corrosion resistance of the samples. It was found that the surface hardness and ${\alpha}^{\prime}_N$ layer thickness increases with increasing $N_2$ percentage and processing time. Although their corrosion behaviors are worse than the bare sample.

  • PDF

열처리 및 노출시간에 따른 17-4PH 스테인레스강의 미세조직 및 기계적 특성에 관한 연구 (Study on the Microstructure and Mechanical Properties of 17-4PH Stainless Steel Depending on Heat Treatment and Exposure Time)

  • 유위도;이종훈;임영목;윤국태
    • 연구논문집
    • /
    • 통권32호
    • /
    • pp.77-84
    • /
    • 2002
  • A martensitic precipitation hardening stainless steel, 17-4PH has been widely used in the aircraft, chemical and nuclear industries for long time, owing to the excellent mechanical properties with corrosion resistance that can be achieved by simple heat treatment. The microstructure and mechanical properties of the 17-4PH stainless steel cast parts for aircraft, such as impeller, are largely affected by heat treatment condition. But the database of heat treatment has not been clearly established in the domestic investment casting industries because the domestic aerospace, industry lags behind the advanced countries. In this study, the microstructural evolution and mechanical properties of cast 17-4PH stainless steel depending on the heat treatment conditions and aging at $400^{\circ}C$ were investigated.

  • PDF

발전용 저탄소 ASTM A356 CA6NM 마르텐사이트계 스테인리스 주강의 용접성 (Weldability of Low-Carbon ASTM A356 CA6NM Martensitic Stainless Steel Casting for Power Plants)

  • 방국수;박찬;이주영;이경운
    • 대한금속재료학회지
    • /
    • 제49권1호
    • /
    • pp.73-78
    • /
    • 2011
  • Weldability, especially HAZ cold cracking, weld metal solidification cracking, and HAZ liquation cracking susceptibilities, of ASTM A356 CA6NM martensitic stainless steel casting was investigated and compared with that of 9-12% Cr ferritic steel castings. Irrespective of the Cr and Ni content in the castings, the HAZ maximum hardness increased with an increase of carbon content. CA6NM steel, which has the lowest carbon content, had the lowest HAZ hardness and showed no cold cracking in y-slit cracking tests. CA6NM steel, meanwhile, showed the largest weld metal solidification cracking susceptibility in varestraint tests because of its higher amount of impurity elements, phosphorus, and sulfur. All castings investigated had good high temperature ductility in hot ductility tests and showed little difference in liquation cracking susceptibility.

마르텐사이트계 스테인리스강 (12%Cr) 의 피로균열 진전거동 및 파괴인성연구 (A Study on the Fatigue Crack Growth Behavior and Fracture Toughness of Martensitic Stainless Steel(12%Cr))

  • 윤병주
    • 한국생산제조학회지
    • /
    • 제9권4호
    • /
    • pp.154-160
    • /
    • 2000
  • Martensitic stainless steels containing 12%Cr are commonly used in quenched and tempered conditions. The quenching heat treatment involves annealing to obtain austenite and to dissolve the carbides , followed by cooling to transform the austenite into martensite and often to cause carbide predipitation. In this study, we used three different tempered specimens which were temperated at 30$0^{\circ}C$, 67$0^{\circ}C$ and 75$0^{\circ}C$ . The crack propagation and fracture toughness tests were performed on this three different specimens. The experimental results showed that the highest value of crack growth rate and the lowest value of fracture toughness were observed in the specimen which were temperated at $600^{\circ}C$, however, when the specimen were temperated at 75$0^{\circ}C$, the vale of crack growth rate was significantly decreased and the value of fracture toughness was significantly increased as compared to which were temperated at $600^{\circ}C$.

  • PDF

원심주조한 마르텐사이트 스테인레스강의 기계적 성질에 미치는 템퍼링 영향 (Effect of Tempering on the Mechanical Properties of Martensitic Stainless Steels Fabricated by Centrifugal Casting)

  • 배은재;백응률;안종헌
    • 한국주조공학회지
    • /
    • 제28권3호
    • /
    • pp.113-118
    • /
    • 2008
  • A new approach of producing martensitic structure for guide-roll materials was developed using centrifugal casting instead of classic overlay welding process. Centrifugal casting offered a simpler process, fewer defects and even microstructures. Especially in terms of thermal fatigue cracking which usually occurs in the HAZ of welding beads of used continuous caster guide roll materials made by overlay welding process. A typical tensile strength of 1,600 MPa was obtained by this process and was higher than typical tensile strength($800{\sim}1,200\;MPa$) with overlay welding technique. Tempering at $400{\sim}550^{\circ}C$ for 2 hrs was observed to have significant precipitate hardening effect which increases strength and elongation. Nitrogen content from the Cr-N input in the casting process was found to have positive contribution to decrease the volume fraction of ${\delta}$-ferrite which directly corresponds to increasing strength of the roll materials.

저온 플라즈마 침질탄화처리된 마르텐사이트계 석출경화형 스테인리스강의 내식성에 미치는 시효 전처리의 영향 (Effects of Pre-Aging Treatment on the Corrosion Resistance of Low Temperature Plasma Nitrocarburized AISI 630 Martensitic Precipitation Hardening Stainless Steel)

  • 이인섭;이천호
    • 한국표면공학회지
    • /
    • 제53권2호
    • /
    • pp.43-52
    • /
    • 2020
  • Various aging treatments were conducted on AISI 630 martensitic precipitation hardening stainless steel in order to optimize aging condition. Aging treatment was carried out in the vacuum chamber of Ar gas with changing aging temperature from 380℃ to 430℃ and aging time from 2h to 8h at 400℃. After obtaining the optimized aging condition, several nitrocarburizing treatments were done without and with the aging treatment. Nitrocarburizing was performed on the samples with a gas mixture of H2, N2 and CH4 for 15 h at vacuum pressure of 4.0 Torr and discharge voltage of 400V. The corrosion resistance was improved noticeably by combined process of aging and nitrocarburizing treatment, which is attributed to higher chromium and nitrogen content in the passive layer, as confirmed by XPS analysis. The optimized condition is finalized as, 4h aging at 400℃ and then subsequent nitrocarburizing at 400℃ with 25% nitrogen and 4% methane gas for 15h at vacuum pressure of 4.0 Torr and discharge voltage of 400V, resulting in the surface hardness of around 1300 HV0.05 and α'N layer thickness of around 11 ㎛ respectively.

STS 440C 마르텐사이트계 스테인리스 강의 열처리에 따른 미세조직, 기계적 특성 및 부식 거동 (Effect of Heat Treatment on Microstructure, Mechanical Property and Corrosion Behavior of STS 440C Martensitic Stainless Steel)

  • 김민구;이광민
    • 한국재료학회지
    • /
    • 제31권1호
    • /
    • pp.29-37
    • /
    • 2021
  • Martensitic stainless steel is commonly used in the medical implant instrument. The alloy has drawbacks in terms of strength and wear properties when applied to instruments with sharp parts. 440C STS alloy, with improved durability, is an alternative to replace 420 J2 STS. In the present study, the carbide precipitation, and mechanical and corrosion properties of STS 440C alloy are studied as a function of different heat treatments. The STS 440C alloy is first austenitized at different temperatures; this is immediately followed by oil quenching and sub-zero treatment. After sub-zero treatment, the alloy is tempered at low temperatures. The microstructures of the heat treated STS 440C alloy consist of martensite and retained austenite and carbides. Using EDX and SADP with a TEM, the precipitated carbides are identified as a Cr23C6 carbide with a size of 1 to 2 ㎛. The hardness of STS 440C alloy is improved by austenitization at 1,100 ℃ with sub-zero treatment and tempering at 200 ℃. The values of Ecorr and Icorr for STS 440C increase with austenitization temperature. Results can be explained by the dissolution of Cr-carbide and the increase in the retained austenite. Sub-zero treatment followed by tempering shows a little difference in the properties of potentiodynamic polarizations.

Mod. 440A 마르텐사이트 스테인리스강의 미세조직과 기계적 성질에 미치는 오스테나이트화 처리의 영향 (Effect of Solution Annealing on the Microstructure and Mechanical Properties of Modified 440A Martensitic Stainless Steel)

  • 김영철;권순두;정병호;강창룡
    • 동력기계공학회지
    • /
    • 제17권4호
    • /
    • pp.103-108
    • /
    • 2013
  • This study was investigated the effect of austenitizing treatment the microstructure and mechanical properties in modified 440A steel, and the results were as follows. The amount of remaining carbide decreases with increasing the austenitizing treatment temperature, and all carbide is completely dissolved at $1250^{\circ}C$. The amount of remaining carbide decreases with increasing the austenitizing treatment time, but the carbide remains insoluble up to 120 minutes at $1050^{\circ}C$. The strength and hardness gradually decrease with increasing the austenitizing treatment temperature and is significantly lower at $1250^{\circ}C$, while the elongation and the impact value rapidly increase. The strength and hardness rapidly decrease, the elongation and impact value rapidly insrease with increasing the austenitizing treatment time and exhibit no change at above 120 minutes. The austenitizing treatment modified 440A steel is required for temperature of above $1050^{\circ}C$ and time of above 60 minutes.