• Title/Summary/Keyword: Marssonina blotch of apple

Search Result 21, Processing Time 0.033 seconds

Biological Characterization of Marssonina coronaria Infecting Apple Trees in Korea (사과나무를 가해하는 한국산 갈색무늬병균의 생물학적 특성)

  • Back, Chang-Gi;Jung, Hee-Young
    • The Korean Journal of Mycology
    • /
    • v.42 no.3
    • /
    • pp.183-190
    • /
    • 2014
  • Apple blotch is a major apple disease and recently it causes critical economic losses in apple orchards in Korea. In this review, we described the history of apple blotch researches, ecology and life cycle of Marssonina coronaria, cultural and molecular characteristics and simple isolation method as well. Furthermore, characteristic of apple blotch like symptoms, its cause still unknown, occurs frequently in cv. "Fuji" was described in detail.

Ecological Characteristics and Unique Diagnostic Techniques of Apple Blotch Disease Caused by Marssonina coronaria in Korea

  • Back, Chang-Gi;Lee, Seung-Yeol;Jung, Hee-Young
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.36-36
    • /
    • 2014
  • Apple blotch, caused by Marssonina coronaria, induce early defoliation in apple and leading to critical economic losses in apple orchards in Korea. Since M. coronaria is difficult to culture, we developed isolation and cultural method. We collected M. coronaria isolates from Gyeongbuk Province and then constructed phylogentic tree based on ITS regions. As the results, phylogenetic relationship indicated that all Korean isolates formed a same cluster and closely related to Chinese isolates [1]. Ecological characteristic of M. coronaria have been observed in apple orchards which located in Gyeongbuk Province from 2011 to present. As the results, the typical apple blotch symptoms were observed from July, and then the infected leaves were discolored and formed acervuli on the leaves. After rainfall, severe infection of symptoms such as discoloration and early defoliation were continuously observed until October. Also overwintered conidia were observed in next March on the fallen diseased leaves [2]. In the last 5 years, ascopores of M. coronaria were not observed in apple orchards which were severely infected by M. coronaria in Korea. Thus, it is assumed that overwintered conidia could be a primary inoculum of M. coronaria. Meanwhile, apple blotch has long latent periods compare to other apple disease. During the latent period, early diagnosis of apple blotch is the most important to control the disease by spray fungicide. In this reason, we developed novel diagnostic method to detect M. coronaria during latent period using optical coherence tomography (OCT) and Loop-mediated isothermal amplification (LAMP) method [2, 3]. In this presentation, it will introduce ecological characterization of M. coronaria in Korea and unique detection technique of M. coronaria in apple. It will be helpful to develop new strategies to control apple blotch in Korea.

  • PDF

Ecology of Marssonina Blotch Caused by Diplocarpon mali on Apple Tree in Kyungpook, Korea (사과나무 갈색무늬병의 발생생태)

  • Kim, Dong-Ah;Lee, Soon-Won;Lee, Joon-Tak
    • Current Research on Agriculture and Life Sciences
    • /
    • v.16
    • /
    • pp.84-95
    • /
    • 1998
  • Apple Marssonina blotch, caused by Diplocarpon mali, which has been increasing on apple trees and become one of the most serious diseases on apple trees in Korea since the begining of 1990's. In this study, ecology of Marssonina blotch including disease incidence and spore dispersals was surveyed from 1992 to 1995 in Kyungpook, and factors influencing the incidence of the disease were analyzed. Marssonina blotch began to occur on apple leaves in June and was observed commonly in most of apple orchards after August, and increased rapidly in September. The incidence of this disease was high at the year of low temperature and a lot of precipitation. The conidia discharge began to occur in May and continued to October, and the peak period of spore release was in August and usually more than 70% of total spore release of the year released from August to September. The incidence of the disease was high in the northern and mountain are as such as Yeongjoo, Chungsong, Andong, and relatively low in the southern areas such as Kunwi, Yongchon. Jonathan cultivar was the most susceptible to Marssonina blotch, and Jonagold, Sekaiichi was secondly susceptible and the next Fuji was more susceptible than Tsugaru. The incidence of the disease was relatively high in orchards which cultivation management of irrigation, drainage, air circulation, fertilization, and fungicide spraying were poor.

  • PDF

The Application of Optical Coherence Tomography in the Diagnosis of Marssonina Blotch in Apple Leaves

  • Lee, Changho;Lee, Seung-Yeol;Jung, Hee-Young;Kim, Jeehyun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.133-140
    • /
    • 2012
  • In this study we investigate the use of 2D and 3D scanning optical coherence tomography (OCT) technology for use in apple blotch diagnosis. In order to test the possible application of OCT as a detection tool for apple trees affected by Marssonina coronaria, we conducted several experiments and compared the results from both healthy and infected leaves. Using OCT, we found several distinctive features in the subsurface boundary regions of both the diseased and healthy leaves. Our results indicate that leaves from diseased trees, while still appearing healthy, can be affected by M. coronaria. The A-scan analysis method confirmed that the boundaries found under the subsurface layers can be faint. This shows that M. coronaria can exert its influence on entire apple trees (as opposed to only on leaves with lesions) once it infects healthy trees. Our results indicate that OCT can be used as a noninvasive tool for the diagnosis of fungal disease in apple trees. Microscopic imaging results, performed as a histological study for comparison, correlated well with the OCT results.

Survey of Major Diseases Occurred on Apple in Northern Gyeongbuk from 2013 to 2014 (2013-2014년도 경북 북부지역 사과 주요 병해 발생조사)

  • Cheon, Wonsu;Jeon, Yongho
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.261-267
    • /
    • 2015
  • During the period from 2013 to 2014, disease occurrences by various pathogens in apple cultivars have been investigated in northern Gyeongbuk province of Korea. Anthracnose, white rot, Alternaria leaf spot, Marssonina blotch, and bacterial shoot blight as major diseases have been observed. Pathogens isolated from the symptomatic plants were identified as Colletotrichum gloeosporioides for anthracnose, Botryosphaeria dothidea for white rot, Alternaria alternata for Alternaria leaf spot, Marssonina mali for Marssonina blotch, and Pseudomonas syringae pv. syringae for bacterial shoot blight. Of all diseases, the bacterial shoot blight has been severely increased in chronically infested fields in Gyeongbuk province.

Development of a 15-day Interval Spraying Program for Controlling Major Apple Diseases

  • Lee, Dong-Hyuck;Kim, Dae-Hee;Shin, Ho-Cheol;Uhm, Jae-Youl
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.439-446
    • /
    • 2008
  • A fungicidal spray program for effective control of three major apple diseases in Korea (white rot, bitter rot, and Marssonina blotch) was developed. This was based on our previous studies showing that application of ergosterol biosynthesis inhibitors (EBIs) in early or mid-August can eradicate white rot infection in fruit and that some protective fungicides show after-infection activity against white rot. The basic spray program focused on control of white rot, the main target disease, and the fungicides were sprayed at 15-day intervals from petal fall to late August using fungicides that show after-infection and EBI activity. The basic spray program was modified over 4 successive years to improve control efficacy against bitter rot and Marssonina blotch, which sometimes cause as much damage as white rot. Modifications to the regime were made every year by replacing one fungicide in the basic program at a specific spraying time. Substitution of only one fungicide in the spray program, even early in the growing season, greatly influenced the final disease incidence at harvest. Applying this principle, a moderately efficient spray program for cv. Fuji that increased the spray interval from 10 to 15 days and thus reduced the number of sprays required per crop season was developed.

Influence of Defoliation by Marssonina Blotch on Vegetative Growth and Fruit Quality in 'Fuji'/M.9 Apple Tree (갈색무늬병에 의한 낙엽이 '후지'/M.9 사과나무의 수체생장 및 과실품질에 미치는 영향)

  • SaGong, Dong-Hoon;Kweon, Hun-Joong;Song, Yang-Yik;Park, Moo-Yong;Nam, Jong-Chul;Kang, Seok-Beom;Lee, Sang-Gyu
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.531-538
    • /
    • 2011
  • This study was carried out to investigate the influence of defoliation by Marssonina blotch (Diplocarpon mali Harada et Sawamura) on vegetative growth and fruit quality in 'Fuji'/M.9 apple tree. Soluble solid contents decreased when the defoliation percentage by Marssonina blotch was over 10% before the end of September, and fruit weight decreased when percentage of defoliation was over 30%. Fruit red color and starch contents tend to decrease as percentage of defoliation near the fruit increased. Return bloom, fruit weight, and shoot growth the following year tend to decrease as percentage of defoliation increased. Photosynthetic rate of healthy leaves in bourse shoot during the end of September was maintained about $10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, effects in increasing fruit growth and soluble solid contents after the end of September. Photosynthetic rates for the damaged leaf, damaged area was over 50% on the leaf surface, while 30% of the photosynthetic rates of healthy leaf are without damage applied with Marssonina blotch at the end of September. The results show that the decrease of fruit quality in defoliation treatments may be caused by the decrease of starch contents in fruit, and that was caused by the photosynthetic rates of leaves near fruit was decreased by Marssonina blotch in the wake of August.

State of Knowledge of Apple Marssonina Blotch (AMB) Disease among Gunwi Farmers

  • Posadas, Brianna B.;Lee, Won Suk;Galindo-Gonzalez, Sebastian;Hong, Youngki;Kim, Sangcheol
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.255-262
    • /
    • 2016
  • Purpose: Fuji apples are one of the top selling exports for South Korea bringing in over $233.4 million in 2013. However, during the last few decades, about half of the Fuji apple orchards have been infected by Apple Marssonina Blotch disease (AMB), a fungal disease caused by Diplocarpon mali., which takes about 40 days to exhibit obvious visible symptoms. Infected leaves turn yellow and begin growing brown lesions. AMB promotes early defoliation and reduces the quality and quantity of apples an infected tree can produce. Currently, there is no prediction model for AMB on the market. Methods: The Precision Agriculture Laboratory (PAL) at the University of Florida (UF) has been working with the National Academy of Agricultural Science, Rural Development Administration, South Korea to investigate the use of hyperspectral data in creating an early detection method for AMB. The RDA has been researching hyperspectral techniques for disease detection at their Apple Research Station in Gunwi since 2012 and disseminates its findings to the local farmers. These farmers were surveyed to assess the state of knowledge of AMB in the area. Out of a population of about 750 growers, 111 surveys were completed (confidence interval of +/- 8.59%, confidence level of 95%, p-value of 0.05). Results: The survey revealed 32% of the farmers did not know what AMB was, but 45% of farmers have had their orchards infected by AMB. Twenty-five percent could not distinguish AMB from other symptoms. Overwhelmingly, 80% of farmers strongly believed an early detection method for AMB was necessary. Conclusions: The results of the survey will help to evaluate the outreach programs of the RDA so they can more effectively educate farmers on the identifying, treating, and mediating AMB.

Biological Characterization of Marssonina coronaria Associated with Apple Blotch Disease

  • Lee, Dong-Hyuk;Back, Chang-Gi;Win, Nang Kyu Kyu;Choi, Kyung-Hee;Kim, Kyung-Min;Kang, In-Kyu;Choi, Cheol;Yoon, Tae-Myung;Uhm, Jae-Youl;Jung, Hee-Young
    • Mycobiology
    • /
    • v.39 no.3
    • /
    • pp.200-205
    • /
    • 2011
  • Marssonina coronaria associated with apple blotch disease causes severe premature defoliation, and is widely distributed in Korea. Thirteen isolates were collected from orchards located in Gyeongbuk Province from 2005~2007. All isolates displayed over 99.6% and 99.2% sequence similarity to each other in internal transcribed spacer regions and partial sequences of 28S rDNA, respectively. The isolates were phylogenetically closely related to Chinese isolates. Selected isolates did not differ in their pathogenicity. The optimum conditions for fungal growth were $20^{\circ}C$ and pH 6 on peptone potato dextrose agar (PPDA). Peptone and mannose were the best nitrogen and carbon source, respectively. Fungal growth was better on PPDA than on common potato dextrose agar. This study provides valuable information for integrated disease management program and facilitates the routine culturing of M. coronaria.

MBCAST: A Forecast Model for Marssonina Blotch of Apple in Korea

  • Kim, Hyo-suk;Jo, Jung-hee;Kang, Wee Soo;Do, Yun Su;Lee, Dong Hyuk;Ahn, Mun-Il;Park, Joo Hyeon;Park, Eun Woo
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.585-597
    • /
    • 2019
  • A disease forecast model for Marssonina blotch of apple was developed based on field observations on airborne spore catches, weather conditions, and disease incidence in 2013 and 2015. The model consisted of the airborne spore model (ASM) and the daily infection rate model (IRM). It was found that more than 80% of airborne spore catches for the experiment period was made during the spore liberation period (SLP), which is the period of days of a rain event plus the following 2 days. Of 13 rain-related weather variables, number of rainy days with rainfall ≥ 0.5 mm per day (Lday), maximum hourly rainfall (Pmax) and average daily maximum wind speed (Wavg) during a rain event were most appropriate in describing variations in airborne spore catches during SLP (Si) in 2013. The ASM, Ŝi = 30.280+5.860×Lday×Pmax-2.123×Lday×Pmax×Wavg was statistically significant and capable of predicting the amount of airborne spore catches during SLP in 2015. Assuming that airborne conidia liberated during SLP cause leaf infections resulting in symptom appearance after 21 days of incubation period, there was highly significant correlation between the estimated amount of airborne spore catches (Ŝi) and the daily infection rate (Ri). The IRM, ${\hat{R}}_i$ = 0.039+0.041×Ŝi, was statistically significant but was not able to predict the daily infection rate in 2015. No weather variables showed statistical significance in explaining variations of the daily infection rate in 2013.