• Title/Summary/Keyword: Markov channel

Search Result 142, Processing Time 0.026 seconds

A Model to Calculate the Optimal Level of the Cognitive Radiotelegraph (무선인지기능 무전기의 적정 재고수준 산정 모형에 관한 연구)

  • Kim, Young-Mook;Choi, Kyung-Hwan;Yoon, Bong-Kyoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.442-449
    • /
    • 2012
  • Cognitive Radio(CR) is the technology that allocates the frequency by using dynamic spectrum access. We proposed a model to calculate the optimal level of the cognitive radiotelegraph, where secondary users opportunistically share the spectrum with primary users through the spectrum sensing. When secondary user with cognitive radio detects the arrival of a primary user in its current channel, the secondary user moves to the idle channel or be placed in the virtual queue. We assume that the primary users have finite buffers and the population of secondary users is finite. Using a two-dimensional Makov model with preemptive priority queueing, we could derive the blocking and waiting probability as well as the optimal level of cognitive radiotelegraph under a various range of parameter circumstances.

Computation Offloading with Resource Allocation Based on DDPG in MEC

  • Sungwon Moon;Yujin Lim
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.226-238
    • /
    • 2024
  • Recently, multi-access edge computing (MEC) has emerged as a promising technology to alleviate the computing burden of vehicular terminals and efficiently facilitate vehicular applications. The vehicle can improve the quality of experience of applications by offloading their tasks to MEC servers. However, channel conditions are time-varying due to channel interference among vehicles, and path loss is time-varying due to the mobility of vehicles. The task arrival of vehicles is also stochastic. Therefore, it is difficult to determine an optimal offloading with resource allocation decision in the dynamic MEC system because offloading is affected by wireless data transmission. In this paper, we study computation offloading with resource allocation in the dynamic MEC system. The objective is to minimize power consumption and maximize throughput while meeting the delay constraints of tasks. Therefore, it allocates resources for local execution and transmission power for offloading. We define the problem as a Markov decision process, and propose an offloading method using deep reinforcement learning named deep deterministic policy gradient. Simulation shows that, compared with existing methods, the proposed method outperforms in terms of throughput and satisfaction of delay constraints.

(Performance Analysis of Channel Allocation Schemes Allowing Multimedia Call Overflows in Hierarchical Cellular Systems) (계층셀 시스템 환경에서 멀티미디어 호의 오버플로우를 허용한 채널할당기법 성능분석)

  • 이상희;임재성
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.316-328
    • /
    • 2003
  • In this paper, we propose and analyze two adaptive channel allocation schemes for supporting multimedia traffics in hierarchical cellular systems. It is guaranteed to satisfy the required quality of service of multimedia traffics according to their characteristics such as a mobile velocity for voice calls and a delay tolerance for multimedia calls. In the scheme 1, only slow-speed voice calls are allowed to overflow from macrocell to microcell and only adaptive multimedia calls can overflow from microcell to macrocell after reducing its bandwidth to the minimum channel bandwidth. In the scheme II, in addition to the first scheme, non-adaptive multimedia calls can occupy the required channel bandwidth through reducing the channel bandwidth of adaptive multimedia calls. The proposed scheme I is analyzed using 2-dimensional Markov model. Through computer simulations, the analysis model and the proposed schemes are compared with the fixed system and two previous studies. In the simulation result, it is shown that the proposed schemes yield a significant improvement in terms of the forced termination probability of handoff calls and the efficiency of channel usage.

Performance Analysis of IEEE 802.15.4e Time Slotted Channel Hopping for Low-Rate Wireless Networks

  • Chen, Shuguang;Sun, Tingting;Yuan, Jingjing;Geng, Xiaoyan;Li, Changle;Ullah, Sana;Alnuem, Mohammed Abdullah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.1-21
    • /
    • 2013
  • The release of IEEE 802.15.4e specification significantly develops IEEE 802.15.4. The most inspiring improvement is the enhancement for medium access control (MAC) sublayer. To study the performance of IEEE 802.15.4e MAC, in this paper we first present an overview of IEEE 802.15.4e and introduce three MAC mechanisms in IEEE 802.15.4e. And the major concern here is the Time Slotted Channel Hopping (TSCH) mode that provides deterministic access and increases network capacity. Then a detailed analytical Markov chain model for TSCH carrier sense multiple access with collision avoidance (CSMA-CA) is presented. Expressions which cover most of the crucial issues in performance analysis such as the packet loss rate, energy consumption, normalized throughput, and average access delay are presented. Finally the performance evaluation for the TSCH mode is given and we make a comprehensive comparison with unslotted CSMA-CA in non-beacon enabled mode of IEEE 802.15.4. It can validate IEEE 802.15.4e network can provide low energy consumption, deterministic access and increase network capacity.

Performance Analysis of a Satellite Communication System based on IPsec VPN (IPsec VPN 기반 위성 통신 시스템 성능 분석)

  • Jeong, Won-Ho;Hwang, Lan-Mi;Kim, Ki-Hong;Park, Sang-Hyun;Yang, Sang-Woon;Lim, Jeong-Seok;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • Satellite signal is excellent broadband, can provide the same information in a wide range, but there is a disadvantage that much less of the security level of the data. Therefore, supplementation of safety is a serious problem than anything in the satellite communication. In this paper, it was simulated by applying ARIA in encryption technique and by applying transport mode, tunnel mode in security header AH and ESP in order to examine the effect of IPsec VPN. In addition, we had compare with general services that do not apply encryption in order to analyze the impact of the encryption algorithm. Channel, by applying the Markov channel and adding AWGN, is constituted a satellite communication environment. In case of retransmission based error control scheme, we applied Type-II HARQ scheme and Type-III HARQ scheme which are performance is a good way in recently, and it is constituted by a turbo code and BPSK modulation scheme. we were analyzed performance in BER and Throughput in order to compare the simulation more effectively.

Unified Model for Performance Analysis of IEEE 802.11 Ad Hoc Networks in Unsaturated Conditions

  • Xu, Changchun;Gao, Jingdong;Xu, Yanyi;He, Jianhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.683-701
    • /
    • 2012
  • IEEE 802.11 standard has achieved huge success in the past decade and is still under development to provide higher physical data rate and better quality of service (QoS). An important problem for the development and optimization of IEEE 802.11 networks is the modeling of the MAC layer channel access protocol. Although there are already many theoretic analysis for the 802.11 MAC protocol in the literature, most of the models focus on the saturated traffic and assume infinite buffer at the MAC layer. In this paper we develop a unified analytical model for IEEE 802.11 MAC protocol in ad hoc networks. The impacts of channel access parameters, traffic rate and buffer size at the MAC layer are modeled with the assistance of a generalized Markov chain and an M/G/1/K queue model. The performance of throughput, packet delivery delay and dropping probability can be achieved. Extensive simulations show the analytical model is highly accurate. From the analytical model it is shown that for practical buffer configuration (e.g. buffer size larger than one), we can maximize the total throughput and reduce the packet blocking probability (due to limited buffer size) and the average queuing delay to zero by effectively controlling the offered load. The average MAC layer service delay as well as its standard deviation, is also much lower than that in saturated conditions and has an upper bound. It is also observed that the optimal load is very close to the maximum achievable throughput regardless of the number of stations or buffer size. Moreover, the model is scalable for performance analysis of 802.11e in unsaturated conditions and 802.11 ad hoc networks with heterogenous traffic flows.

Modeling and Performance Analysis of Communication Channels for Multimedia System (멀티미디어 시스템의 통신 채널 모델링 및 성능분석)

  • Bang Suk-Yoon;Ro Cheul-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.1
    • /
    • pp.147-155
    • /
    • 2005
  • In this paper, communication channels for the transmission of multimedia packets are modeled and evaluated. The multimedia packet traffic characterized by on-off and MMPP process for voice and data, respectively, dynamic channel allocation, queueing of data packets due to unavailability of channels and dropping of queued data packets over timeout, and guard channel for voice packets are modeled. The performance indices adopted in the evaluation of SRN model includes blocking and dropping probabilities. The SRN uses rewards concepts instead of the complicate numerical analysis required for the Markov chain. It is shown that our SRN modeling techniques provide an easier way to carry out performance analysis.

  • PDF

An Adaptive FEC Code Control Algorithm for Mobile Wireless Sensor Networks

  • Ahn Jong-Suk;Hong Seung-Wook;Heidemann John
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.489-498
    • /
    • 2005
  • For better performance over a noisy channel, mobile wireless networks transmit packets with forward error correction (FEC) code to recover corrupt bits without retransmission. The static determination of the FEC code size, however, degrades their performance since the evaluation of the underlying channel state is hardly accurate and even widely varied. Our measurements over a wireless sensor network, for example, show that the average bit error rate (BER) per second or per minute continuously changes from 0 up to $10^{-3}$. Under this environment, wireless networks waste their bandwidth since they can't deterministically select the appropriate size of FEC code matching to the fluctuating channel BER. This paper proposes an adaptive FEC technique called adaptive FEC code control (AFECCC), which dynamically tunes the amount of FEC code per packet based on the arrival of acknowl­edgement packets without any specific information such as signal to noise ratio (SNR) or BER from receivers. Our simulation experiments indicate that AFECCC performs better than any static FEC algorithm and some conventional dynamic hybrid FEC/ARQ algorithms when wireless channels are modeled with two-state Markov chain, chaotic map, and traces collected from real sensor networks. Finally, AFECCC implemented in sensor motes achieves better performance than any static FEC algorithm.

Modeling and Performance Analysis of Finite Load 802.11 WLAN with Packet Loss (패킷 손실을 갖는 유한 로드 802.11 무선 랜의 모델링과 성능분석)

  • Choi, Chang-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.249-257
    • /
    • 2005
  • A Markov model for the IEEE 802.11 standard which is the most widely deployed wireless LAN protocol, is designed and the channel throughput is evaluated. The DCF of 802.11, which is based on CSMA/CA protocol, coordinates transmissions onto the shared communication channel. In this paper, under a finite load traffic condition and the assumption of packet loss after the final backoff stage. We present an algorithm to find the transmission probability and derive the formula for the channel throughput. The proposed model is validated through simulation and is compared with the case without packet losses.

  • PDF

Performance Analysis of Cellular Networks with D2D communication Based on Queuing Theory Model

  • Xin, Jianfang;Zhu, Qi;Liang, Guangjun;Zhang, Tiaojiao;Zhao, Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2450-2469
    • /
    • 2018
  • In this paper, we develop a spatiotemporal model to analysis of cellular user in underlay D2D communication by using stochastic geometry and queuing theory. Firstly, by exploring stochastic geometry to model the user locations, we derive the probability that the SINR of cellular user in a predefined interval, which constrains the corresponding transmission rate of cellular user. Secondly, in contrast to the previous studies with full traffic models, we employ queueing theory to evaluate the performance parameters of dynamic traffic model and formulate the cellular user transmission mechanism as a M/G/1 queuing model. In the derivation, Embedded Markov chain is introduced to depict the stationary distribution of cellular user queue status. Thirdly, the expressions of performance metrics in terms of mean queue length, mean throughput, mean delay and mean dropping probability are obtained, respectively. Simulation results show the validity and rationality of the theoretical analysis under different channel conditions.