• Title/Summary/Keyword: Markov chain Monte Carlo sampling

Search Result 63, Processing Time 0.016 seconds

Survival Analysis for White Non-Hispanic Female Breast Cancer Patients

  • Khan, Hafiz Mohammad Rafiqullah;Saxena, Anshul;Gabbidon, Kemesha;Stewart, Tiffanie Shauna-Jeanne;Bhatt, Chintan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.4049-4054
    • /
    • 2014
  • Background: Race and ethnicity are significant factors in predicting survival time of breast cancer patients. In this study, we applied advanced statistical methods to predict the survival of White non-Hispanic female breast cancer patients, who were diagnosed between the years 1973 and 2009 in the United States (U.S.). Materials and Methods: Demographic data from the Surveillance Epidemiology and End Results (SEER) database were used for the purpose of this study. Nine states were randomly selected from 12 U.S. cancer registries. A stratified random sampling method was used to select 2,000 female breast cancer patients from these nine states. We compared four types of advanced statistical probability models to identify the best-fit model for the White non-Hispanic female breast cancer survival data. Three model building criterion were used to measure and compare goodness of fit of the models. These include Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information Criteria (DIC). In addition, we used a novel Bayesian method and the Markov Chain Monte Carlo technique to determine the posterior density function of the parameters. After evaluating the model parameters, we selected the model having the lowest DIC value. Using this Bayesian method, we derived the predictive survival density for future survival time and its related inferences. Results: The analytical sample of White non-Hispanic women included 2,000 breast cancer cases from the SEER database (1973-2009). The majority of cases were married (55.2%), the mean age of diagnosis was 63.61 years (SD = 14.24) and the mean survival time was 84 months (SD = 35.01). After comparing the four statistical models, results suggested that the exponentiated Weibull model (DIC= 19818.220) was a better fit for White non-Hispanic females' breast cancer survival data. This model predicted the survival times (in months) for White non-Hispanic women after implementation of precise estimates of the model parameters. Conclusions: By using modern model building criteria, we determined that the data best fit the exponentiated Weibull model. We incorporated precise estimates of the parameter into the predictive model and evaluated the survival inference for the White non-Hispanic female population. This method of analysis will assist researchers in making scientific and clinical conclusions when assessing survival time of breast cancer patients.

Bayesian ordinal probit semiparametric regression models: KNHANES 2016 data analysis of the relationship between smoking behavior and coffee intake (베이지안 순서형 프로빗 준모수 회귀 모형 : 국민건강영양조사 2016 자료를 통한 흡연양태와 커피섭취 간의 관계 분석)

  • Lee, Dasom;Lee, Eunji;Jo, Seogil;Choi, Taeryeon
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.1
    • /
    • pp.25-46
    • /
    • 2020
  • This paper presents ordinal probit semiparametric regression models using Bayesian Spectral Analysis Regression (BSAR) method. Ordinal probit regression is a way of modeling ordinal responses - usually more than two categories - by connecting the probability of falling into each category explained by a combination of available covariates using a probit (an inverse function of normal cumulative distribution function) link. The Bayesian probit model facilitates posterior sampling by bringing a latent variable following normal distribution, therefore, the responses are categorized by the cut-off points according to values of latent variables. In this paper, we extend the latent variable approach to a semiparametric model for the Bayesian ordinal probit regression with nonparametric functions using a spectral representation of Gaussian processes based BSAR method. The latent variable is decomposed into a parametric component and a nonparametric component with or without a shape constraint for modeling ordinal responses and predicting outcomes more flexibly. We illustrate the proposed methods with simulation studies in comparison with existing methods and real data analysis applied to a Korean National Health and Nutrition Examination Survey (KNHANES) 2016 for investigating nonparametric relationship between smoking behavior and coffee intake.

A Comparison Study of Model Parameter Estimation Methods for Prognostics (건전성 예측을 위한 모델변수 추정방법의 비교)

  • An, Dawn;Kim, Nam Ho;Choi, Joo Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.355-362
    • /
    • 2012
  • Remaining useful life(RUL) prediction of a system is important in the prognostics field since it is directly linked with safety and maintenance scheduling. In the physics-based prognostics, accurately estimated model parameters can predict the remaining useful life exactly. It, however, is not a simple task to estimate the model parameters because most real system have multivariate model parameters, also they are correlated each other. This paper presents representative methods to estimate model parameters in the physics-based prognostics and discusses the difference between three methods; the particle filter method(PF), the overall Bayesian method(OBM), and the sequential Bayesian method(SBM). The three methods are based on the same theoretical background, the Bayesian estimation technique, but the methods are distinguished from each other in the sampling methods or uncertainty analysis process. Therefore, a simple physical model as an easy task and the Paris model for crack growth problem are used to discuss the difference between the three methods, and the performance of each method evaluated by using established prognostics metrics is compared.