• Title/Summary/Keyword: Markov Random Fiel

Search Result 1, Processing Time 0.017 seconds

Efficient Methodology in Markov Random Field Modeling : Multiresolution Structure and Bayesian Approach in Parameter Estimation (피라미드 구조와 베이지안 접근법을 이용한 Markove Random Field의 효율적 모델링)

  • 정명희;홍의석
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.147-158
    • /
    • 1999
  • Remote sensing technique has offered better understanding of our environment for the decades by providing useful level of information on the landcover. In many applications using the remotely sensed data, digital image processing methodology has been usefully employed to characterize the features in the data and develop the models. Random field models, especially Markov Random Field (MRF) models exploiting spatial relationships, are successfully utilized in many problems such as texture modeling, region labeling and so on. Usually, remotely sensed imagery are very large in nature and the data increase greatly in the problem requiring temporal data over time period. The time required to process increasing larger images is not linear. In this study, the methodology to reduce the computational cost is investigated in the utilization of the Markov Random Field. For this, multiresolution framework is explored which provides convenient and efficient structures for the transition between the local and global features. The computational requirements for parameter estimation of the MRF model also become excessive as image size increases. A Bayesian approach is investigated as an alternative estimation method to reduce the computational burden in estimation of the parameters of large images.