• Title/Summary/Keyword: Markers

Search Result 5,218, Processing Time 0.031 seconds

Construction of an Integrated Pepper Map Using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC End Sequences

  • Lee, Heung-Ryul;Bae, Ik-Hyun;Park, Soung-Woo;Kim, Hyoun-Joung;Min, Woong-Ki;Han, Jung-Heon;Kim, Ki-Taek;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.21-37
    • /
    • 2009
  • Map-based cloning to find genes of interest, marker-assisted selection (MAS), and marker-assisted breeding (MAB) all require good genetic maps with high reproducible markers. For map construction as well as chromosome assignment, development of single copy PCR-based markers and map integration process are necessary. In this study, the 132 markers (57 STS from BAC-end sequences, 13 STS from RFLP, and 62 SSR) were newly developed as single copy type PCR-based markers. They were used together with 1830 markers previously developed in our lab to construct an integrated map with the Joinmap 3.0 program. This integrated map contained 169 SSR, 354 RFLP, 23 STS from BAC-end sequences, 6 STS from RFLP, 152 AFLP, 51 WRKY, and 99 rRAMP markers on 12 chromosomes. The integrated map contained four genetic maps of two interspecific (Capsicum annuum 'TF68' and C. chinense 'Habanero') and two intraspecific (C. annuum 'CM334' and C. annuum 'Chilsungcho') populations of peppers. This constructed integrated map consisted of 805 markers (map distance of 1858 cM) in interspecific populations and 745 markers (map distance of 1892 cM) in intraspecific populations. The used pepper STS were first developed from end sequences of BAC clones from Capsicum annuum 'CM334'. This integrated map will provide useful information for construction of future pepper genetic maps and for assignment of linkage groups to pepper chromosomes.

Genetic Diversity of Korean Rice Breeding Parents as Measured by DNA Fingerprinting with Simple Sequence Repeat (SSR) Markers

  • Song, Moon-Tae;Lee, Jeom-Ho;Lee, Sang-Bok;Cho, Youn-Sang;Ku, Ja-hwan;Seo, Kyoung-In;Choi, Seong-ho;Hwang, Heung-Goo
    • Plant Resources
    • /
    • v.6 no.1
    • /
    • pp.16-26
    • /
    • 2003
  • Molecular markers are useful tools for evaluating genetic diversity and determining cultivar identity. Present study was conducted to evaluate the genetic diversity within a diverse collection of rice accessions used for Korean breeding programs. Two hundred eighty-seven rice cultivars, composed of temperate japonica, tropical japonica, indica, and Tongil-type of Korean crossing parents were evaluated by means of 15 simple sequence repeat (SSR) markers. A total of 99 alleles were detected, and the number of alleles per marker ranged from 4 to 11, with an average of 6.6 per locus. Polymorphism information content (PIC) for each of the SSR markers ranged from 0.2924 to 0.8102 with an average of 0.5785. These results, with the result that use of only 15 SSR markers made all rice cultivars examined could be uniquely distinguished, imply the efficiency of SSR markers for analysis of genetic diversity in rice. Cluster analysis was performed on similar coefficient matrics calculated from SSR markers to generate a dendogram in which two major groups corresponding to japonica (Group I) and indica and Tongil type rice (group II) with additional subclasses within both major groups. The narrowness of the Korean breeding germplasm was revealed by the fact that most of the Korean-bred and Japan-bred temperate japonica cultivars were concentrated into only 2 of the sub-group I-1 (143 cultivars) and I-2 (58 cultivars) among six sub-groups in major group of japonica. This is because of the japonica accessions used in this study was a very closely related ones because of frequent sharing of the crossing parents with similar genetic background with synergy effect of the inherited genetic difference between indica and japonica. A rice breeding strategy with the use of molecular markers was discussed for overcoming of genetic vulnerability owing to this genetic narrowness.

  • PDF

Development of Molecular Markers for Xanthomonas axonopodis Resistance in Soybean

  • Kim Ki-Seung;Van Kyujung;Kim Moon Young;Lee Suk-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.429-433
    • /
    • 2004
  • A single recessive gene, rxp, controls the bacterial leaf pustule (BLP) resistance in soybean and in our previous article, it has been mapped on linkage group (LG) D2 of molecular genetic map of soybean. A total of 130 recombinant inbred lines (RILs) from a cross between BLP-resistant SS2-2 and BLP-susceptible Jangyeobkong were used to identify molecular markers linked to rxp. Fifteen simple sequence repeat (SSR) markers on LG D2 were screened to construct a genetic map of rxp locus. Only four SSR markers, Satt135, Satt372, Satt448, and Satt486, showed parental polymorphisms. Using these markers, genetic scaffold map was constructed covering 26.2cM. Based on the single analysis of variance, Satt372 among these four SSR markers was the most significantly associated with the resistance to BLP. To develop new amplified fragment length polymorphism (AFLP) marker linked to the resistance gene, bulked segregant analysis (BSA) was employed. Resistance and susceptible bulks were made by pooling equal amount of genomic DNAs from ten of each in the segregating population. A total of 192 primer combinations were used to identify specific bands to the resistance, selecting three putative AFLP markers. These AFLP markers produced the fragment present in SS2-2 and the resistant bulk, and not in Jangyeobkong and the susceptible bulk. Linkage analysis revealed that McctEact97 $(P=0.0004,\;R^2=14.67\%)$ was more significant than Satt372, previously reported as the most closely linked marker.

A Comparison of Two Kinds of Markers Applied in Analysis of Genetic Diversity in Sheep and Goat Populations

  • Yang, Z.P.;Chang, H.;Sun, W.;Gen, R.Q.;Mao, Y.J.;Tsunoda, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.7
    • /
    • pp.892-896
    • /
    • 2004
  • A genetic examination using 14 structural loci and 7 microsatellite markers was carried out among random samples of Hu sheep (Hu), Tong sheep (Tong) and Yantse River Delta White goat (YRD); The mean heterozygosity (H), mean polymorphism information contents (PIC) and mean effective numbers of alleles (Ne) calculated based on the data from the above two types of genetic markers were compared. The standard genetic distances among the three populations based on two types of gene frequencies were calculated and compared. The results show that the mean heterozygosity (H), mean polymorphism information contents (PIC) and mean effective numbers of alleles (Ne) based on 7 microsatellite markers are greater than those based on the structural loci. The standard genetic distances based on structural loci among the three populations are: 0.0268-0.2487, the standard genetic distances based on microsatellite markers are: 0.2321-1.2313. The study indicates that structural and microsatellite markers reflect the genetic variation of the three populations consistently: Tong>Hu>YRD. The differentiation between related species or interpopulations can be expressed more effectively by microsatellite markers than structural markers. Oar FCB11, MAF33, Oar AE101, Oar FCB128 and OarFCB304 can be used as representative loci for research on genetic differentiation between sheep and goat.

Discrimination of Korean Native Chicken Lines Using Fifteen Selected Microsatellite Markers

  • Seo, D.W.;Hoque, M.R.;Choi, N.R.;Sultana, H.;Park, H.B.;Heo, K.N.;Kang, B.S.;Lim, H.T.;Lee, S.H.;Jo, C.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.316-322
    • /
    • 2013
  • In order to evaluate the genetic diversity and discrimination among five Korean native chicken lines, a total of 86 individuals were genotyped using 150 microsatellite (MS) markers, and 15 highly polymorphic MS markers were selected. Based on the highest value of the number of alleles, the expected heterozygosity (He) and polymorphic information content (PIC) for the selected markers ranged from 6 to 12, 0.466 to 0.852, 0.709 to 0.882 and 0.648 to 0.865, respectively. Using these markers, the calculated genetic distance (Fst), the heterozygote deficit among chicken lines (Fit) and the heterozygote deficit within chicken line (Fis) values ranged from 0.0309 to 0.2473, 0.0013 to 0.4513 and -0.1002 to 0.271, respectively. The expected probability of identity values in random individuals (PI), random half-sib ($PI_{half-sibs}$) and random sibs ($PI_{sibs}$) were estimated at $7.98{\times}10^{-29}$, $2.88{\times}10^{-20}$ and $1.25{\times}10^{-08}$, respectively, indicating that these markers can be used for traceability systems in Korean native chickens. The unrooted phylogenetic neighbor-joining (NJ) tree was constructed using 15 MS markers that clearly differentiated among the five native chicken lines. Also, the structure was estimated by the individual clustering with the K value of 5. The selected 15 MS markers were found to be useful for the conservation, breeding plan, and traceability system in Korean native chickens.

CACTA and MITE Transposon Distributions on a Genetic Map of Rice Using F15 RILs Derived from Milyang 23 and Gihobyeo Hybrids

  • Kwon, Soon-Jae;Hong, Sung-Won;Son, Jae-Han;Lee, Ju Kyong;Cha, Yong-Soon;Eun, Moo-Young;Kim, Nam-Soo
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.360-366
    • /
    • 2006
  • Up to 35% of the rice genome consists of various kinds of transposons, and CACTA and MITE are two of the major class 2 DNA transposons in the genome. We have employed the consensus sequences of Rim2/Hipa CACTA, Stowaway MITE Pangrangja, and Tourist MITE Ditto for transposon display (TD) analysis to locate them on a genetic map, with 58 SSR markers used to anchor them. The TD analysis produced a high profile of the polymorphisms between the parental lines, Oryza sativa var. Gihobyeo/O. sativa var. Milyang, in intraspecific $F_{15}$ RIL lines, locating 368 markers of Rim2/Hipa CACTA, 78 markers of Tourist MITE Ditto, and 22 markers of Stowaway MITE Pangrangja. In the segregation analysis, non-parental segregating bands and segregation distortion bands were observed. The recombinant genetic map spans 3023.9 cM, with 5.7 cM the average distance between markers. The TD markers were distributed unequally on the chromosomes because many TD markers were located in pericentric chromosomal regions except in the cases of chromosomes 2, 3, 6 and 9. Although the number of transposon markers was not sufficient to include all rice class 2 transposons, the current map of CACTA and MITE transposons should provide new insight into the genome organization of rice since no previous DNA transposon map is available.

Evaluation of QTL Related SSR Marker Universality in Korean Rice Breeding Populations

  • Song, Moon-Tae;Lee, Jeom-Ho;Lee, Sang-Bok;Ku, Ja-Hwan;Cho, Youn-Sang;Song, Myung-Hee;Park, Sung-Ho;Hwang, Hung-Goo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.1
    • /
    • pp.56-64
    • /
    • 2003
  • If a quantitative trait loci (QTL) marker identified in a population is applicable to different populations (marker universality), this will not only reduce the labor and cost in marker assisted selection (MAS), but accelerate the application of molecular markers to real breeding programs. Present study aims to evaluate the defined QTL related markers from a population to a different breeding population for the MAS. Four rice breeding populations were subjected to seventy-five simple sequence repeat (SSR) markers which were already identified for their polymorphism information content (PIC) in the parents of the crossings. Among them, eight markers were evaluated for their correlation between presence of marker alleles and phenotypic expression in breeding populations. A reasonable level of polymorphism for the mapped markers originated from any sources of rice accessions was observed between crosses of any sources (marker repeatability). However, correlation between presence of markers and expression of the traits in rice breeding populations was not significant except for minor portion of traits and markers examined (failure of marker universality). In the present study, various strategies were discussed to develop new markers with universality of breeding application.

Genetic Diversity of Wild and Cultivated Populations of American Ginseng (Panax Quinquefolium) from Eastern North America Analyzed by RAPD Markers

  • Lim, Wan-Sang
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.262-269
    • /
    • 2005
  • The objective of this study was to assess genetic diversity among 6 different wild ginseng populations from New York, Kentucky, North Carolina, Pennsylvania, Tennessee and Virginia, and to compare these wild populations to one cultivated population. RAPD markers were used to estimate the genetic difference among samples from the 7 populations. The 64 random primers were screened, and 15 primers were selected which exhibited the 124 highly reproducible polymorphic markers. The ratio of discordant bands to total bands scored was used to estimate the genetic distance within and among populations. Multidimensional scaling (MDS) of the relation matrix showed distinctive separation between wild and cultivated populations. The MDS result was confirmed using pooled chi-square tests for fragment homogeneity. This study suggests that RAPD markers can be used as population-specific markers for American ginseng.

Motion analysis system using image processing (화상처리를 이용한 동작분석 시스템에 관한 연구)

  • 박경수;반영환;이안재;임창주;오인석;이현철
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.71-75
    • /
    • 1997
  • This paper presents the development of videobased 3-dimensional tracking system. Measurement of human motion is important in the application of ertonomics. The system uses advanced direct video measurement technology. Passive retro-reflecting markers are attached to a subject and movements of markers are observed by two CCD cameras. Infrared light emitted near the CCD cameras is reflected by the markers and is detected by the cameras. The images are captured by Samsung MVB302 board and the centers of markers are calculated by DSP program. The positions of markers are transferred from MVB02 board to the computer through AT bus. The computer then tracks the position of each marker and saves the data. This system has dynamic accuracy with 0.7% average error and 4.2% maximum error, and the sampling rate to 6 .approx. 10 Hz, and this system can analyse the trajectory and speed of the marker. The results of this study can be used for operator's motion analysis, task analysis, and hand movement characteristic analysis.

  • PDF

Bootstrapping and DNA Marker Mining of ILSTS098 Microsatellite Locus in Hanwoo Chromosome 2

  • Lee, Jea-Young;Kwon, Jae-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.525-535
    • /
    • 2006
  • We describe tests for detecting and locating quantitative traits loci (QTL) for traits in Hanwoo. Lod scores and a permutation test have been described. From results of a permutation test to detect QTL, we select major DNA markers of ILSTS098 microsatellite locus in Hanwoo chromosome 2 for further analysis. K-means clustering analysis applied to four traits and eight DNA markers in ILSTS098 resulted in three cluster groups. We conclude that the major DNA markers of BMS1167 microsatellite locus in Hanwoo chromosome 2 are markers 105bp, 113bp and 115bp. Finally, bootstrap testing method has been adapted to calculate confidence intervals and for finding major DNA Markers.