• Title/Summary/Keyword: Marker and Cell method

Search Result 184, Processing Time 0.031 seconds

Multi-cell Segmentation of Glioblastoma Combining Marker-based Watershed and Elliptic Fitting Method in Fluorescence Microscope Image (마커 제어 워터셰드와 타원 적합기법을 결합한 다중 교모세포종 분할)

  • Lee, Jiyoung;Jeong, Daeun;Lee, Hyunwoo;Yang, Sejung
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.159-166
    • /
    • 2021
  • In order to analyze cell images, accurate segmentation of each cell is indispensable. However, the reality is that accurate cell image segmentation is not easy due to various noises, dense cells, and inconsistent shape of cells. Therefore, in this paper, we propose an algorithm that combines marker-based watershed segmentation and ellipse fitting method for glioblastoma cell segmentation. In the proposed algorithm, in order to solve the over-segmentation problem of the existing watershed method, the marker-based watershed technique is primarily performed through "seeding using local minima". In addition, as a second process, the concave point search using ellipse fitting for final segmentation based on the connection line between the concave points has been performed. To evaluate the performance of the proposed algorithm, we compared three algorithms with other algorithms along with the calculation of segmentation accuracy, and we applied the algorithm to other cell image data to check the generalization and propose a solution.

A FUNDAMENTAL STUDY ON THE NUMERICAL SIMULATION OF WAVE BREAKING PHENOMENON AROUND THE FORE-BODY OF SHIP (선수주위 쇄파현상의 수치시뮬레이션에 관한 기초연구)

  • Eom T.J.;Lee Y.-G.;Jeong K.-L.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.195-199
    • /
    • 2005
  • Wave breaking phenomenon near the fore body of a ship is numerically simulated. The ship advance with uniform velocity in calm water. For the simulation, incompressible Navier-Stokes equations and continuity equation are adopted as governing equations. The simulation is carried out in staggered variable mesh system with finite difference method. Marker and Cell(MAC) method and Marker-Density method are employed to track the free surface. Body boundary conditions are satisfied with the adoption of porosity method and no-slip condition on the hull surface. The ship model has a wedge type fore-body, and the computational domain is an appropriate region around the fore-body. The computation results are compared with some experimental results. Also the difference of the free surface tracking methods are discussed.

  • PDF

Characteristics of Wave Exciting Forces on a Very Large Floating Structure with Submerged-Plate

  • Lee Sang-Min;Hong Chun-Beom
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2061-2067
    • /
    • 2005
  • In this study, we focus on the submerged plate built into the Very Large Floating Structure with the partial openings of Sm long, which enables the reverse flow of incident wave to generate the wave breaking. The purpose of this study is to investigate the characteristics of wave exciting forces acting on the submerged plate and the fore part of VLFS. Firstly, we have carried out the extensive experiments to understand the characteristics of the wave exciting forces. Then we have performed the numerical simulations by applying the Marker and Cell method (MAC method) and compared with the experimental results. We discuss the validity of MAC method and the effects of the submerged plate on the motion of VLFS. As a result, we get the conclusion that the submerged plate is useful for reducing the wave exciting forces acting on the structure behind the submerged plate.

A semi-automatic cell type annotation method for single-cell RNA sequencing dataset

  • Kim, Wan;Yoon, Sung Min;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • v.18 no.3
    • /
    • pp.26.1-26.6
    • /
    • 2020
  • Single-cell RNA sequencing (scRNA-seq) has been widely applied to provide insights into the cell-by-cell expression difference in a given bulk sample. Accordingly, numerous analysis methods have been developed. As it involves simultaneous analyses of many cell and genes, efficiency of the methods is crucial. The conventional cell type annotation method is laborious and subjective. Here we propose a semi-automatic method that calculates a normalized score for each cell type based on user-supplied cell type-specific marker gene list. The method was applied to a publicly available scRNA-seq data of mouse cardiac non-myocyte cell pool. Annotating the 35 t-stochastic neighbor embedding clusters into 12 cell types was straightforward, and its accuracy was evaluated by constructing co-expression network for each cell type. Gene Ontology analysis was congruent with the annotated cell type and the corollary regulatory network analysis showed upstream transcription factors that have well supported literature evidences. The source code is available as an R script upon request.

The Wave Exciting Forces Acting on a Submerged-Plate

  • Lee, Sang-Min
    • Journal of Navigation and Port Research
    • /
    • v.28 no.7
    • /
    • pp.641-645
    • /
    • 2004
  • In this study, we focus on the submerged plate built into the Very Large Floating Structure with the partial openings of 5m long, which enables the reverse flow of incident wave to generate the wave breaking. The purpose of this study is to investigate the characteristics of wave exciting forces acting on the submerged plate. Firstly, we have carried out the extensive experiments to understand the characteristics of the wave exciting forces. Then we have performed the numerical simulations by applying the Marker and Cell method and compared with the experimental results. We discuss the validity of MAC method and the effects of the submerged plate on the motion of VLFS.

The Wave Exciting Forces Acting on a Submerged-Plate

  • Lee, Sang-Min;Kong, Gil-Young;Kim, Chol-Seong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.203-207
    • /
    • 2004
  • In this study, we focus on the submerged plate built into the Very Large Floating Structure with the partial openings of 5m long, which enables the reverse flow of incident wave to generate the wave breaking. The purpose of this study is to investigate the characteristics of wave exciting forces acting on the submerged plate. Firstly, we have carried out the extensive experiments to understand the characteristics of the wave exciting forces. Then we have performed the numerical simulations by applying the Marker and Cell method and compare with the experimental results. We discuss the validity of MAC method and the effects of the submerged plate on the motion of VLFS.

  • PDF

Numerical Analysis on Flow Fields and the Calculation of Wave Making Resistance about Air Supported Ships (수치시뮬레이션에 의한 공기부양선 주위의 유동장해석과 조파저항계산)

  • Na Y. I.;Lee Y.-G.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.55-63
    • /
    • 1996
  • Numerical computations are carried out to analyze the characteristics of flow fields around Air Supported Ships. The computations are performed in a rectangular grid system based on MAC(Marker And Cell) method. The governing equations are represented in finite difference forms by forward differencing in time and centered differencing in space except for its convection terms. For the certification of this numerical analysis method, the computations of flow fields around a Catamaran, an ACV(Air Cushion Vehicle) modeled with pressure distribution on free surface and two SES(Surface Effect Ship)'s are carried out, The results of the present computations are compared with the previously presented computational and experimental results in the same condition.

  • PDF

A Fundamental Study for the Numerical Simulation Method of Green Water Occurrence on Bow Deck (선수부 갑판침입수의 수치시뮬레이션에 대한 기초연구)

  • Jeong, Kwang-Leol;Lee, Young-Gill;Kim, Nam-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.188-195
    • /
    • 2010
  • Green water load is an important parameter to be considered in designing a modern ship or offshore structures like FPSO and FSRU. In this research, a numerical simulation method for green water phenomenon is introduced. The Navier-Stokes equations and the continuity equation are used as governing equations. The equations are calculated using Finite Difference Method(FDM) in rectangular staggered grid system. To increase the numerical accuracy near the body, the Cartesian cut cell method is employed. The nonlinear free-surface during green water incident is defined by Marker-density method. The green waters on a box in regular waves are simulated. The simulation results are compared with other experimental and computational results for verification. To check the applicability to moving ship, the green water of the ship which is towed by uniform force in regular wave, is simulated. The ship is set free to heave and to surge.

Noninvasive fetal RHD genotyping using cell-free fetal DNA incorporating fetal RASSF1A marker in RhD-negative pregnant women in Korea

  • Han, Sung-Hee;Yang, Young-Ho;Ryu, Jae-Song;Kim, Young-Jin;Lee, Kyoung-Ryul
    • Journal of Genetic Medicine
    • /
    • v.12 no.2
    • /
    • pp.100-108
    • /
    • 2015
  • Purpose: Conventional methods for the prenatal detection of fetal RhD status involve invasive procedures such as fetal blood sampling and amniocentesis. The identification of cell-free fetal DNA (cffDNA) in maternal plasma creates the possibility of determining fetal RhD status by analyzing maternal plasma DNA. However, some technical problems still exist, especially the lack of a positive control marker for the presence of fetal DNA. Therefore, we assessed the feasibility and accuracy of fetal RHD genotyping incorporating the RASSF1A epigenetic fetal DNA marker from cffDNA in the maternal plasma of RhD-negative pregnant women in Korea. Materials and Methods: We analyzed maternal plasma from 41 pregnant women identified as RhD-negative by serological testing. Multiplex real-time PCR was performed by amplifying RHD exons 5 and 7 and the SRY gene, with RASSF1A being used as a gender-independent fetal epigenetic marker. The results were compared with those obtained by postnatal serological analysis of cord blood and gender identification. Results: Among the 41 fetuses, 37 were RhD-positive and 4 were RhD-negative according to the serological analysis of cord blood. There was 100% concordance between fetal RHD genotyping and serological cord blood results. Detection of the RASSF1A gene verified the presence of cffDNA, and the fetal SRY status was correctly detected in all 41 cases. Conclusion: Noninvasive fetal RHD genotyping with cffDNA incorporating RASSF1A is a feasible, reliable, and accurate method of determining fetal RhD status. It is an alternative to amniocentesis for the management of RhD-negative women and reduces the need for unnecessary RhIG prophylaxis.

Numerical simulations of two-dimensional floating breakwaters in regular waves using fixed cartesian grid

  • Jeong, Kwang-Leol;Lee, Young-Gill
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.206-218
    • /
    • 2014
  • The wave attenuation by floating breakwaters in high amplitude waves, which can lead to wave overtopping and breaking, is examined by numerical simulations. The governing equations, the Navier-Stokes equations and the continuity equation, are calculated in a fixed Cartesian grid system. The body boundaries are defined by the line segment connecting the points where the grid line and body surface meet. No-slip and divergence free conditions are satisfied at the body boundary cell. The nonlinear waves near the moving body is defined using the modified marker-density method. To verify the present numerical method, vortex induced vibration on an elastically mounted cylinder and free roll decay are numerically simulated and the results are compared with those reported in the literature. Using the present numerical method, the wave attenuations by three kinds of floating breakwaters are simulated numerically in a regular wave to compare the performance.