• Title/Summary/Keyword: Maritime University

Search Result 9,244, Processing Time 0.036 seconds

CRFs versus Bi-LSTM/CRFs: Automatic Word Spacing Perspective (CRFs와 Bi-LSTM/CRFs의 비교 분석: 자동 띄어쓰기 관점에서)

  • Yoon, Ho;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-min;Namgoong, Young;Choi, Minseok;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.189-192
    • /
    • 2018
  • 자동 띄어쓰기란 컴퓨터를 사용하여 띄어쓰기가 수행되어 있지 않은 문장에 대해 띄어쓰기를 수행하는 것이다. 이는 자연언어처리 분야에서 형태소 분석 전에 수행되는 과정으로, 띄어쓰기에 오류가 발생할 경우, 형태소 분석이나 구문 분석 등에 영향을 주어 그 결과의 모호성을 높이기 때문에 매우 중요한 전처리 과정 중 하나이다. 본 논문에서는 기계학습의 방법 중 하나인 CRFs(Conditional Random Fields)를 이용하여 자동 띄어쓰기를 수행하고 심층 학습의 방법 중 하나인 양방향 LSTM/CRFs (Bidirectional Long Short Term Memory/CRFs)를 이용하여 자동 띄어쓰기를 수행한 뒤 각 모델의 성능을 비교하고 분석한다. CRFs 모델이 양방향 LSTM/CRFs모델보다 성능이 약간 더 높은 모습을 보였다. 따라서 소형 기기와 같은 환경에서는 CRF와 같은 모델을 적용하여 모델의 경량화 및 시간복잡도를 개선하는 것이 훨씬 더 효과적인 것으로 생각된다.

  • PDF

Defining Chunks for Parsing in Korean (구문 분석을 위한 한국어 말덩이 정의)

  • Namgoong, Young;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Yoon, Ho;Choi, Minseok;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.409-412
    • /
    • 2018
  • 한국어는 문장 구성 요소들 간의 이동 및 생략이 자유롭다는 언어적 특성 때문에 구문 분석을 할 때 중의성이 증가한다. 뿐만 아니라 형태소 분석 단계에서 고도로 세분화된 분석 결과로 인해 한국어 구문 분석에 어려움을 더하고 있다. 이러한 문제점을 완화하기 위한 한 방안으로 형태소 분석과 구문 분석의 중간 단계에서 같은 역할을 수행하는 형태소들을 묶어 하나의 의미를 가진 부분적인 구문 요소(말덩이)를 형성하는 방법이 있다. 본 논문에서는 이러한 말덩이들에 대해 구체적인 정의를 내리고 그 단위 및 표지를 제시하여 향후 부분 구문 분석의 연구 및 수행에 활용될 수 있는 기준을 제시한다.

  • PDF

An integrated method of flammable cloud size prediction for offshore platforms

  • Zhang, Bin;Zhang, Jinnan;Yu, Jiahang;Wang, Boqiao;Li, Zhuoran;Xia, Yuanchen;Chen, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.321-339
    • /
    • 2021
  • Response Surface Method (RSM) has been widely used for flammable cloud size prediction as it can reduce computational intensity for further Explosion Risk Analysis (ERA) especially during the early design phase of offshore platforms. However, RSM encounters the overfitting problem under very limited simulations. In order to overcome the disadvantage of RSM, Bayesian Regularization Artificial Neural (BRANN)-based model has been recently developed and its robustness and efficiency have been widely verified. However, for ERA during the early design phase, there seems to be room to further reduce the computational intensity while ensuring the model's acceptable accuracy. This study aims to develop an integrated method, namely the combination of Center Composite Design (CCD) method with Bayesian Regularization Artificial Neural Network (BRANN), for flammable cloud size prediction. A case study with constant and transient leakages is conducted to illustrate the feasibility and advantage of this hybrid method. Additionally, the performance of CCD-BRANN is compared with that of RSM. It is concluded that the newly developed hybrid method is more robust and computational efficient for ERAs during early design phase.

Korean Named Entity Recognition Using BIT Representation (BIT 표기법을 활용한 한국어 개체명 인식)

  • Yoon, Ho;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Namgoong, Young;Choi, Min-Seok;Kim, Jae-Kyun;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.190-194
    • /
    • 2019
  • 개체명 인식이란 주어진 문서에서 개체명의 범위를 찾고 개체명을 분류하는 것이다. 최근 많은 연구는 신경망 모델을 이용하며 하나 이상의 단어로 구성된 개체명을 BIO 표기법으로 표현한다. BIO 표기법은 개체명이 시작되는 단어의 표지에 B(Beginning)-를 붙이고, 개체명에 포함된 그 외의 단어의 표지에는 I(Inside)-를 붙이며, 개체명과 개체명 사이의 모든 단어의 표지를 O로 간주하는 방법이다. BIO 표기법으로 표현된 말뭉치는 O 표지가 90% 이상을 차지하므로 O 표지에 대한 혼잡도가 높아지는 문제와 불균형 학습 문제가 발생된다. 본 논문에서는 BIO 표기법 대신에 BIT 표기법을 제안한다. BIT 표기법이란 BIO 표기법에서 O 표지를 T(Tag) 표지로 변환하는 방법이며 본 논문에서 T 표지는 품사 표지를 나타낸다. 실험을 통해서 BIT 표기법이 거의 모든 경우에 성능이 향상됨을 확인할 수 있었다.

  • PDF

Building Korean Dependency Treebanks Reflected Chunking (구묶음을 반영한 한국어 의존 구조 말뭉치 생성)

  • Namgoong, Young;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Yoon, Ho;Choi, Min-Seok;Kim, Jae-Kyun;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.133-138
    • /
    • 2019
  • 의존 구문 분석은 문장 구성 요소의 위치에 제약이 적고 생략에도 유연하게 대처할 수 있어 한국어 구문 분석에 적합하다. 하지만 의존 구문 분석을 수행할 때 지배소를 결정해야 할 노드 수가 많으면 계산의 복잡도가 올라가고, 각 노드의 지배소를 결정할 때 방향성 문제가 있어 구문 분석에 모호함을 더한다. 이때 지배소 후위 원칙을 엄격하게 적용할 경우 구문적 중심어와 의미적 중심어가 불일치하는 문제가 발생한다. 이러한 문제들을 해소하기 위해 구묶음을 수행한 문장으로 구문 분석을 수행할 수 있다. 따라서, 본 논문에서는 기존의 의존 구문 말뭉치를 말덩이 기반의 의존 구문 말뭉치로 변환하는 알고리즘을 기술하고, 이에 따라 구축한 말뭉치와 기존의 말뭉치를 정량적으로 비교한다.

  • PDF

Detecting errors on Korean POS tagged corpus using GMM (GMM을 이용한 품사 부착 말뭉치의 오류 탐지)

  • Choi, Min-Seok;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Ho-Min;Yoon, Ho;Namgoong, Young;Kim, Jae-Kyun;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.246-251
    • /
    • 2019
  • 품사 부착 말뭉치란 문장에 포함된 각 단어에 품사 표지를 부착한 말뭉치를 말한다. 이런 말뭉치에는 다양한 형태의 오류들이 포함되어 있으며, 오류가 포함된 말뭉치를 학습 자료로 사용하는 자연언어처리 시스템의 좋은 성능을 기대할 수 없다. 따라서 말뭉치의 일관성이나 정확도는 자연언어처리 시스템의 성능에 많은 영향을 준다. 하지만 말뭉치 구축 과정에서 작업자의 실수가 발생하고 여러 작업자가 작업을 수행하다 보니 일관성을 유지하기가 쉽지 않다. 본 논문에서는 이러한 문제를 해결하기 위해서 GMM을 이용한 군집화를 수행하여 오류 후보를 추출한다. 이를 통해서 말뭉치 구축 과정에서 작업자의 실수를 방지하고 일관성을 유지하고자 한다. 세종품사부착 말뭉치를 대상으로 임의로 오류를 유발시켜 실험한 결과, 재현율 84.74%의 성능으로 오류를 탐지하였다. 향후에 좀 더 높은 재현율을 위해서 자질 확장이나 회귀 분석 방법 등을 추진할 계획이다.

  • PDF