• Title/Summary/Keyword: Maritime Communication Networks

Search Result 86, Processing Time 0.024 seconds

Design of a Multi-Band Network Selection System for Seamless Maritime Communication Networks (단절 없는 해상 통신 네트워크를 위한 멀티대역 네트워크선택기 시스템 설계)

  • Cho, A-ra;Yun, Changho;Lim, Yong-kon;Choi, Youngchol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1252-1260
    • /
    • 2017
  • As digital communication technology evolves, the diversity of maritime communication methods has benn increasing due to the emergence of new maritime communication technologies such as digital very high frequency (VHF) communication systems and LTE-M as well as traditional conventional maritime communication systems. At sea, all maritime communication methods may be available, but only some communication methods may be available depending on the location. In this paper, we propose a multi-band network selection (MNS) system that can provide seamless maritime communication service by switching to an optimal communication band among available communication systems, depending on network environment and user requirements. The proposed MNS system in the middleware layer is designed to be able to interface with two types of digital VHF communication systems that satisfy Annex 1 and Annex 4 of ITU-R M. 1842-1, LTE, and high frequency (HF) communication systems. We assign priority to each communication band, and design an optimal communication band determination algorithm based on this priority.

MIMO-aided Efficient Communication Resource Scheduling Scheme in VDES

  • Sung, Juhyoung;Cho, Sungyoon;Jeon, Wongi;Park, Kyungwon;Ahn, Sang Jung;Kwon, Kiwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2736-2750
    • /
    • 2022
  • As demands for the maritime communications increase, a variety of functions and information are required to exchange via elements of maritime systems, which leads communication traffic increases in maritime frequency bands, especially in VHF (Very High Frequency) band. Thus, effective resource management is crucial to the future maritime communication systems not only to the typical terrestrial communication systems. VHF data exchange system (VDES) enables to utilize more flexible configuration according to the communication condition. This paper focuses on the VDES communication system among VDES terminals such as shore stations, ship stations and aids to navigation (AtoN) to address efficient resource allocation. We propose a resource management method considering a MIMO (Multiple Input Multiple Output) technique in VDES, which has been widely used for modern terrestrial wireless networks but not for marine environments by scheduling the essential communication resources. We introduce the general channel model in marine environment and give two metrics, spectral and the energy efficiencies to examine our resource scheduling algorithm. Based on the simulation results and analysis, the proposed method provides a possibility to enhance spectral and energy efficiencies. Additionally, we present a trade-off relationship between spectral and energy efficiencies. Furthermore, we examine the resource efficiencies related to the imperfect channel estimation.

Development of Bypass Unit for Ship Area Network Based on Legacy-line Communication (무배선 통신을 위한 선박 네트워크용 바이패스 장치 개발)

  • Jun, Ho-Ik;Kim, Hyun-Sik;Jung, Kyun Sik;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.292-297
    • /
    • 2015
  • In this paper, we reported the bypass unit for ship area networks in order to detour the communication failure regions and poor communication links. The device was composed of three parts of circuits for power cut-off, protection, and coupling transformer. Since the coupling transformer exerts a dominant influence on the performance of the by-pass unit, we have tried to find the optimal magnetic core materials and its dimensions. The prototype was passed through the performance test of insertion loss, temperature, and vibration characteristics. The insertion loss was around -2 dB in the range of 90 kHz ~ 30 MHz and the average communication speed was 59.2 Mbps in the laboratory. A pilot communication test using the developed tool was conducted in the training ship of the Korea Maritime and Ocean University. As a results of experiment, we showed that the wired communication among the heterogeneous-links in the ship area networks are possible by the bypass unit and also a high speed communication services are available in ~ Mbps by using a power-line.

Design of Multi-band Network Selection System for Maritime Networks (해상멀티대역 네트워크 선택기 시스템 설계)

  • Cho, A-ra
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.87-89
    • /
    • 2017
  • In this paper, we propose a multi-band network selection (MNS) system, which determines and seamlessly connects to the desired available communication band based on user preferences and network environments. The MNS system employs MNS server in the middleware layer which communicates with clients in order to combine and manage heterogeneous networks efficiently. In addition, we define a system architecture and function modules of the MNS system. The MNS system monitors availability in each communication band and updates the network status information table which is applied to determining the best available network. It is expected that the MNS system can be applied to the next generation maritime networks and communication infrastructure of e-navigation.

  • PDF

Indoor Test of a Multi-band Network Selection System for Maritime Networks (해상멀티대역 네트워크 선택기 시스템 실증 연구)

  • Cho, A-ra
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.652-655
    • /
    • 2017
  • As maritime information and communication technology has been developing and the demands for various kinds of application services has been increasing nowadays, the multi-band maritime networks combining available multiple radio networks has been introduced. We have previously proposed a multi-band network selection(MNS) system which operates in the middleware layer and selects the best available network seamlessly. In this paper we develop MNS server software, network interfaces, and application program. The functionalities of the MNS system, including updating network status, connecting to heterogeneous networks, and communicating in the best network are also verified via indoor test.

  • PDF

Ship Ad-hoc Communication (SAC) Protocol for SANETs (선박용 애드혹 네트워크를 위한 Ship Ad-hoc Communication 프로토콜)

  • Yun, Chang-Ho;Kim, Seung-Gun;Park, Jong-Won;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.906-912
    • /
    • 2012
  • A ship ad-hoc network (SANET) can provide ships with diverse multimedia services by replacing expensive satellite communications. While ITU-R M. 1842-1, standards for maritime VHF band digital communications, can be used as the specifications of physical layer for SANETs, no standards are specified for higher layers of SANETs. In this paper, we propose a ship ad-hoc communication (SAC) protocol for SANETs, based on medium access control (MAC) and routing protocols for terrestrial ad-hoc networks. SAC protocol is a cross-layer protocol which combines MAC and routing into one algorithm and considers maritime environments, including the existence of neighboring ships, the possibility of routing to a destination, and changing the communication mode in case of VHF channel failure.

A distributed relay selection algorithm for two-hop wireless body area networks

  • Kim, Seung-Ku;Joo, Yang-Ick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.156-162
    • /
    • 2017
  • This paper investigates two-hop extension communication in wireless body area networks. Many previous studies have demonstrated that two-hop extended topology outperforms single-hop topology. Although many researchers have proposed using two-hop extension communication to improve link reliability, no one has considered using a relay selection algorithm or provided a suitable solution for wireless body area networks. The design goal of the proposed algorithm is selecting a proper relay node to retransmit failed packets distributively. The proposed algorithm configures the carrier sensing period to choose one relay node promptly without requiring additional interaction. We analyze the link conditions corresponding to various body postures and investigate which factors are proper to determine the carrier sensing period. The empirical results show that the proposed algorithm reduces the expected number of transmissions required to deliver a packet successfully.

A Genetic Algorithm for Cooperative Communication in Ad-hoc Networks (애드혹 네트워크에서 협력통신을 위한 유전 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.201-209
    • /
    • 2014
  • This paper proposes a genetic algorithm to maximize the connectivity among the mobile nodes for the cooperative communication in ad-hoc networks. In general, as the movement of the mobile nodes in the networks increases, the amount of calculation for finding the solution would be too much increased. To obtain the optimal solution within a reasonable computation time for a high-density network, we propose a genetic algorithm to obtain the optimal solution for maximizing the connectivity. In order to make a search more efficient, we propose some efficient neighborhood generating operations of the genetic algorithm. We evaluate those performances through some experiments in terms of the maximum number of connections and the execution time of the proposed algorithm. The comparison results show that the proposed algorithm outperforms other existing algorithms.

Implementation of a Buoy System Based on Multi-Hop Relay Networks for Ocean Observation (해양관측을 위한 다중 홉 릴레이 네트워크 기반의 부이 시스템 구현)

  • Lee, Woon-hyun;Kwon, Hyuk-Jin;Kim, Si-moon;Jeong, SeongHoon;Kim, Jeongchang
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.182-189
    • /
    • 2016
  • In this paper, we propose a buoy system based on multi-hop relay networks for ocean observation. The proposed system consists of various sensor modules, a gateway, wireless communication modules, and a remote monitoring site. The sensor modules are integrated with various communication interfaces and connected to the gateway of the proposed buoy system with an unified protocol based on controller area network (CAN)-bus. In order to communicate with the remote monitoring site and extend the coverage, the proposed system uses long-term evolution (LTE) router and XBee mesh network modules. The field test results show that the proposed system can extend the coverage using the proposed multi-hop relay network.

Fan-shaped Search Zone Routing Protocol for Ship Ad Hoc Networks (선박 애드 혹 네트워크를 위한 부채꼴 탐색구역 경로배정 프로토콜)

  • Son, Joo-Young
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.6
    • /
    • pp.521-528
    • /
    • 2008
  • Such conventional maritime communication technologies as radio have short some comings in their transmission quality. It can be overcome by wireless channels provided by satellites such as INMARSAT, which nevertheless suffer from the high costs. In this paper, we propose a novel technology resolving the above problems, featuring in the establishment of maritime communication networks with multi-hop structures. The inter vessel and ship-to- shore networks previously modeled after MANET are remodeled by SANET (Ship Ad Hoc Networks) in the present work. Fan-shaped Search Zone Routing (FSR) protocol also is presented, which utilizes not only static geographical information including the locations of ports and the navigations of courses but also the unique characteristics of ships in terms of mobile nodes. The FSR finds the fan-shaped search zone on which the shortest path is located. The performance of LAR protocol is compared with that of FSR in several ways. First, FSR does not make use of a type of control packets as beaconing data, resulting in a full utilization of the bandwidth of the wireless channels. Second, the delivery rate by the FSR is 100% for the fan-shaped search zone includes at least one route between source and destination nodes on its border line, where as that of LAR has been turned out to be 64%. Third, the optimality of routes searched by the FSR is on a 97% level. Of all, the FSR shows a better performance than LAR by about 50%.