• Title/Summary/Keyword: Marine-derived bacteria

Search Result 42, Processing Time 0.023 seconds

Bacterial diversity of the Marine Sponge, Halichondria panicea by ARDRA and DGGE (ARDRA와 DGGE를 이용한 Halichondria panicea 해면의 공생세균 다양성)

  • Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.398-406
    • /
    • 2015
  • Culture-dependent ARDRA and culture-independent DGGE were employed to investigate the bacterial community associated with the marine sponge Halichondria panicea collected from Jeju Island. A total of 120 bacterial strains associated with the sponge were cultivated using modified Zobell and Marine agar media. PCR amplicons of the 16S rRNA gene from the bacterial strains were digested with the restriction enzymes HaeIII and MspI, and then assigned into different groups according to their restriction patterns. The 16S rRNA gene sequences derived from ARDRA patterns showed more than 96% similarities compared with known bacterial species, and the isolates belonged to four classes, Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Firmicutes, of which Alphaproteobacteria was dominant. DGGE fingerprinting of 16S rRNA genes amplified from the sponge-derived total gDNA showed 14 DGGE bands, and their sequences showed 100% similarities compared with the sequences available in GenBank. The sequences derived from DGGE bands revealed high similarity with the uncultured bacterial clones. DGGE revealed that bacterial community consisted of seven classes, including Alphaproteobacteria, Gammaproteobacteria, Acidobacteria, Actinobacteira, Bacteroidetes, Cyanobacteria, and Chloroflexi. According to both the ARDRA and DGGE methods, three classes, Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, were commonly found in H. panicea. However, overall bacterial community in the sponge differed depending on the analysis methods. Sponge showed more various bacterial community structures in culture independent method than in culture-dependent method.

The Estimation of Food Sources for Macroinvertebrates as Stenopsyche marmorata in Natory Stream by Fatty Acid (지방산 분석에 의한 나토리 하천 대형 무척추동물인 Stenopsyche marmorata의 먹이원 평가)

  • Shin, Woo-Seok;Kim, Boo-Gil;Lee, Yong-Doo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.97-102
    • /
    • 2012
  • The purpose of this study is to clarify the origin and the variation of essential fatty acid (FA) and food sources of Stenopsyche marmorata at downstream region of Dam. As a result, the water particulate organic matter (POM) is mainly derived from diatom, green algae and bacteria. Moreover, the main food sources of S. marmorata mainly used diatom, green algae and bacteria. ${\omega}3$ essential FA of S. marmorata was higher than ${\omega}6$, and showed about 7 for essential FA ratio.

Phylogenetic Analysis of Bacterial Diversity in the Marine Sponge, Asteropus simplex, Collected from Jeju Island (제주도에서 채집한 해양 해면, Asteropus simplex의 공생세균에 관한 계통학적 분석)

  • Jeong, In-Hye;Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.275-283
    • /
    • 2012
  • Culture-dependent RFLP and culture-independent DGGE were employed to investigate the bacterial community associated with the marine sponge Asteropus simplex collected from Jeju Island. A total of 120 bacterial strains associated with the sponge were cultivated using modified Zobell and MA media. PCR amplicons of the 16S rDNA from the bacterial strains were digested with the restriction enzymes HaeIII and MspI, and then assigned into different groups according to their restriction patterns. The 16S rDNA sequences derived from RFLP patterns showed more than 94% similarities compared with known bacterial species, and the isolates belonged to five phyla, Alphaproteobacteria, Gammaproteobacteria Actinobacteria, Bacteroidetes, and Firmicutes, of which Gammaproteobacteria was dominant. DGGE fingerprinting of 16S rDNAs amplified from the sponge-derived total gDNA showed 12 DGGE bands, and their sequences showed more than 90% similarities compared with available sequences. The sequences derived from DGGE bands revealed high similarity with the uncultured bacterial clones. DGGE revealed that bacterial community consisted of seven phyla, including Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Actinobacteira, Chloroflexi, and Nitrospira. Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria were commonly found in bacteria associated with A. simplex by both RFLP and DGGE methods, however, overall bacterial community in the sponge differed depending on the analysis methods. Sponge showed more various bacterial community structures in culture-independent method than in culture-dependent method.

Development of piezoelectric immunosensor for the rapid detection of marine derived pathogenic bacteria, Vibrio vulnificus

  • Hong, Suhee;Jeong, Hyun-Do
    • Journal of fish pathology
    • /
    • v.27 no.2
    • /
    • pp.99-105
    • /
    • 2014
  • Biosensors consist of biochemical recognition agents like antibodies immobilized on the surfaces of transducers that change the recognition into a measurable electronic signal. Here we report a piezoelectric immunosensor made to detect Vibrio vulnificus. A 9MHz AT-cut piezoelectric wafer attached with two gold electrodes of 5mm diameter was used as the transducer of the QCM biosensor with a reproducibility of ${\pm}0.1Hz$ in frequency response. We have tried different approaches to immobilize antibody on the sensor chip. Concerning the orientation of antibody for the best antigen binding capacity, the antibody was immobilized by specific binding to protein G or by cross-linking through hydrazine. In addition, protein G was cross-linked on glutaraldehyde activated immine layer (PEI) or EDC/NHS activated sulfide monolayer (MPA). PEI was found to be more effective to immobilize protein G following glutaraldehyde activation than MPA. However, hydrazine chip showed a better capability to immobilize more IgG than protein G chip and a higher sensitivity. The sensor system was able to detect V. vulnificus in dose dependent manner and was able to detect bacterial cells within 5 minutes by monitoring frequency shifts in real time. The detection limit can be improved by preincubation to enrich the bacterial cell number.

Production of γ-amino Butyric Acid by Lactic Acid Bacteria in Skim Milk (탈지방우유에서 가바생성 유산균 배양을 통한 가바생성 연구)

  • Cha, Jin Young;Kim, Young Rok;Beck, Bo Ram;Park, Ji Hun;Hwang, Cher Won;Do, Hyung Ki
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.223-228
    • /
    • 2018
  • Lactic acid bacteria were isolated from a variety of fermented seafoods and sea creatures from the East Sea Rim, Korea and were screened for ${\gamma}-amino$ butyric acid-producing (GABA) activity. Through a 16S rRNA sequence analysis, the bacteria of interest, which were GABA-positive on the thin-layer chromatography analysis, were recognized as three isolates of Lactobacillus (Lb.) brevis and one isolate of Lactococcus (Lc.) lactis. Lb. brevis FSFL0004 and FSFL0005 were isolated from fermented anglerfish and Lb. brevis FSFL0036 was derived from salted cutlass fish. The Lc. lactis strain FGL0007 was isolated from the gut of a brown sole flounder. According to HPLC analysis, the GABA contents produced by FSFL0004, FSFL0005, FSFL0036 and FGL0007 were equivalent to $10,754.37{\mu}g/ml$, $13,082.79{\mu}g/ml$, $12,290.19{\mu}g/ml$, and $45.07{\mu}g/ml$ respectively in 1% monosodium glutamate-supplemented methionyl-tRNA synthetase (MRS) broth. The four strains were inoculated in skim milk with 1% monosodium glutamate to commercialize the strains as starter cultures for GABA-enriched dairy products, and TLC results displayed the production of ${\gamma}-amino$ butyric acid by all four strains in the adaptation media. Lc. lactis FGL0007 demonstrated the greatest GABA production ($431.42{\mu}g/ml$) by HPLC analysis. The GABA production by lactic acid bacteria strains in the skim milk demonstrated in the present study may be helpful for the production of GABA-enriched dairy products.

Biologically active compounds from natural and marine natural organisms with antituberculosis, antimalarial, leishmaniasis, trypanosomiasis, anthelmintic, antibacterial, antifungal, antiprotozoal, and antiviral activities

  • Asif, Mohammad
    • CELLMED
    • /
    • v.6 no.4
    • /
    • pp.22.1-22.19
    • /
    • 2016
  • The biologically active compounds derived from different natural organisms such as animals, plants, and microorganisms like algae, fungi, bacteria and merine organisms. These natural compounds possess diverse biological activities like anthelmintic, antibacterial, antifungal, antimalarial, antiprotozoal, antituberculosis, and antiviral activities. These biological active compounds were acted by variety of molecular targets and thus may potentially contribute to several pharmacological classes. The synthesis of natural products and their analogues provides effect of structural modifications on the parent compounds which may be useful in the discovery of potential new drug molecules with different biological activities. Natural organisms have developed complex chemical defense systems by repelling or killing predators, such as insects, microorganisms, animals etc. These defense systems have the ability to produce large numbers of diverse compounds which can be used as new drugs. Thus, research on natural products for novel therapeutic agents with broad spectrum activities and will continue to provide important new drug molecules.

Identification of a Prophage-encoded Abortive Infection System in Levilactobacillus brevis

  • Feyereisen, Marine;Mahony, Jennifer;O'Sullivan, Tadhg;Boer, Viktor;van Sinderen, Douwe
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.322-327
    • /
    • 2020
  • Abortive infection systems (Abi) are phage resistance systems that can be prophage-encoded. Here, two genes encoding an Abi system were identified on a prophage sequence contained by the chromosome of the Levilactobacillus brevis strain UCCLBBS124. This Abi system is similar to the two-component AbiL system encoded by Lactococcus lactis biovar. diacetylactis LD10-1. The UCCLBBS124 prophage-derived Abi system (designated here as AbiL124) was shown to exhibit specific activity against phages infecting L. brevis and L. lactis strains. Expression of the AbiL124 system was shown to cause reduction in the efficiency of plaquing and cell lysis delay for phages of both species.

Development of Life Science and Biotechnology by Marine Microorganisms (해양 미생물을 활용한 생명과학 및 생명공학 기술 개발)

  • Yongjoon Yoon;Bohyun Yun;Sungmin Hwang;Ki Hwan Moon
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.593-604
    • /
    • 2023
  • The ocean accounts for over 70% of the Earth's surface and is a space of largely unexplored unknowns and opportunities. Korea is a peninsula surrounded by the sea on three sides, emphasizing the importance of marine research. The ocean has an extremely complex environment with immense biological diversity. In terms of microbiology, the marine environment has varying factors like extreme temperature, pressure, solar radiation, salt concentration, and pH, providing ecologically unique habitats. Due to this variety, marine organisms have very different phylogenetic classifications compared with terrestrial organisms. Although various microorganisms inhabit the ocean, studies on the diversity, isolation, and cultivation of marine microorganisms and the secondary metabolites they produce are still insufficient. Research on bioactive substances from marine microorganisms, which were rarely studied until the 1990s, has accelerated in terms of natural products from marine Actinomycetes since the 2000s. Since then, industries for bioplastic and biofuel production, carbon dioxide capture, probiotics, and pharmaceutical discovery and development of antibacterial, anticancer, antioxidant, and anti-inflammatory drugs using bacteria, archaea, and algae have significantly grown. In this review, we introduce current research findings and the latest trends in life science and biotechnology using marine microorganisms. Through this article, we hope to create consumer awareness of the importance of basic and applied research in various natural product-related discovery fields other than conventional pharmaceutical drug discovery. The article aims to suggest pathways that may boost research on the optimization and application of future marine-derived materials.

In vitro antibacterial and synergistic effect of phlorotannins isolated from edible brown seaweed Eisenia bicyclis against acne-related bacteria

  • Lee, Jeong-Ha;Eom, Sung-Hwan;Lee, Eun-Hye;Jung, Yeoun-Joong;Kim, Hyo-Jung;Jo, Mi-Ra;Son, Kwang-Tae;Lee, Hee-Jung;Kim, Ji Hoe;Lee, Myung-Suk;Kim, Young-Mog
    • ALGAE
    • /
    • v.29 no.1
    • /
    • pp.47-55
    • /
    • 2014
  • To develop effective and safe acne vulgaris therapies with a continuing demand for new solutions, we investigated unique efficacy of an antibacterial agent from marine brown alga Eisenia bicyclis in treating acne vulgaris. The methanolic extract of E. bicyclis exhibited potential antibacterial activity against acne-related bacteria. The ethyl acetate fraction showed the strongest antibacterial activity against the bacteria among solvent fractions. Six compounds (1-6), previously isolated from the ethyl acetate fraction of E. bicyclis, were evaluated for antibacterial activity against acne-related bacteria. Among them, compound 2 (fucofuroeckol-A [FF]) exhibited the highest antibacterial activity against acne-related bacteria with a minimum inhibitory concentration (MIC) ranging from 32 to $128{\mu}g\;mL^{-1}$. Furthermore, FF clearly reversed the high-level erythromycin and lincomycin resistance of Propionibacterium acnes. The MIC values of erythromycin against P. acnes were dramatically reduced from 2,048 to $1.0{\mu}g\;mL^{-1}$ in combination with MIC of FF ($64{\mu}g\;mL^{-1}$). The fractional inhibitory concentration indices of erythromycin and lincomycin were measured from 0.500 to 0.751 in combination with 32 or $64{\mu}g\;mL^{-1}$ of FF against all tested P. acnes strains, suggesting that FF-erythromycin and FF-lincomycin combinations exert a weak synergistic effect against P. acnes. The results of this study suggest that the compounds derived from E. bicyclis can be a potential source of natural antibacterial agents and a pharmaceutical component against acnerelated bacteria.

Identification of bacteria isolated from rockworm viscera and application of isolated bacteria to shrimp aquaculture wastewater treatment

  • Ja Young Cho;Kyoung Sook Cho;Chang Hoon Kim;Joong Kyun Kim
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.2
    • /
    • pp.167-178
    • /
    • 2023
  • Large amounts of waste and wastewater from aquaculture have negatively impacted ecosystems. Among them, shrimp aquaculture wastewater contains large amounts of nitrogen contaminants derived from feed residues in an aerobic environment. This study isolated candidate strains from adult rockworms to treat shrimp aquaculture wastewater (SAW) in an aerobic environment. Among 87 strains isolated, 25 grew well at the same temperature as the shrimp aquaculture with excellent polymer degradation ability (>0.5 cm clear zone). Six isolates (strains AL1, AL4, AL5, AL6, LA10, and PR15) were finally selected after combining strains with excellent polymer degradation ability without antagonism. 16S rRNA sequencing analysis revealed that strains AL1, AL4, AL5, AL6, LA10, and PR15 were closely related to Bacillus paramycoides, Bacillus pumilus, Stenotrophomonas rhizophila, Bacillus paranthracis, Bacillus paranthracis, and Micrococcus luteus, respectively. When these six isolates were applied to SAW, they reached a maximum cell viability of 2.06×105 CFU mL-1. Their chemical oxygen demand (CODCr) and total nitrogen(TN) removal rates for 12h were 51.0% and 44.6%, respectively, when the CODCr/TN ratio was approximately 10.0. Considering these removal rates achieved in this study under batch conditions, these six isolates could be used for aerobic denitrification. Consequently, these six isolates from rockworms are good candidates that can be applied to the field of aquaculture wastewater treatment.