• 제목/요약/키워드: Marine phytoplankton

검색결과 435건 처리시간 0.036초

Preliminary Study of Effect of Internal Wave to Phytoplankton Distribution in the Lombok Strait and Adjacent Areas

  • Arvelyna, Yessy;Oshima, Masaki
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1246-1248
    • /
    • 2003
  • Internal wave with a soliton-like, large amplitudes within several kilometers, is frequently observed in the sea surface caused by tidal rectification due to sill or rough topographic changes. Internal waves can perturb current and density field, initiate bottom sediment re -suspension and mix nutrients to photic zone. Previous studies indicate that the appearance of internal wave in the Lombok Strait have been detected in SAR image data. This paper studies effect of internal wave in the Lombok Strait to chlorophyll distribution in the surrounded areas using SeaWiFS and ERS SAR images data during 1996-2001 periods. The preliminary result concludes that the internal waves presumably affect phytoplankton distribution spreading southeastward in the coast off Bali Island. The distribution of phytoplankton at southern coastline off Bali Island when internal wave occurred is elongated and distributed further to westward (from 8.8$^{\circ}$ to 10.7$^{\circ}$LS) than the area when internal wave did not occur on August 2000 (from 9.25$^{\circ}$ to 10.25$^{\circ}$LS) as shown in figure 3. It shown that the surface phytoplankton concentration near coastal area, i.e. from 8.8$^{\circ}$ to 9.25$^{\circ}$ LS, increased when internal wave is occurred.

  • PDF

Contribution of Marine Microbes to Particulate Organic Matter in the Korea Strait

  • Kang, Hun;Kang, Dae-Seok
    • Journal of the korean society of oceanography
    • /
    • 제37권1호
    • /
    • pp.35-44
    • /
    • 2002
  • To assess the relative contribution of bacterial and phytoplankton biomasses to particulate organic matter (POM) in the water column, microbial abundance and biomass were from two transects in the western channel of the Korea Strait in 1996. Bacterial abundance had a mean value of $5.9{\times}10^5$ cells/ml and chlorophyll-a averaged 0.14 ${\mu}g/l$. Bacterial abundance in the Korea Strait showed a positive relationship with chlorophyll-a concentration, while the distribution of POM did not covary with chlorophyll-a. Particulate organic carbon (POC) and nitrogen (PON) concentrations were greater in August than in October. Bacterial carbon (POC) and nitrogen (PON) concentrations were greater in August than in October. Bacterial carbon and nitrogen biomasses were 7.29 ${\mu}gC/l$ and 1.24 ${\mu}gN/l$, respectively, during the study periods. Bacterial biomass was larger in October than in August due to the autumn phytoplankton bloom. Phytoplankton biomass based on chlorophyll-a was 7.67 ${\mu}gC/l$ for carbon and 1.10${\mu}gN/l$l for nitrogen. The ratio of bacterial carbon (BC) to phytoplankton carbon (Cp) averaged 0.95 in the Korea Strait in 1996. Bacteria may play a more significant role in the dynamics of POM than phytoplankton do in August, with BC/Cp ratio of 1.26. The ratio of BC to Cp increased with a decrease in chlorophyll-a concentration. Averaged over all the samples in both cruises, the contribution of microbial biomass to POC and PON was about 43% and 51%, respectively. Bacterial assemblage constituted a significant fraction of POC (21%) and PON (27%). Phytoplankton accounted for 22% of POC and 24% of PON. Microbial biomass played a more important role in the dynamics of POC and PON in October than in August due to a significant increase in microbial biomass in the southern transect (transect-B) in October by the autumn phytoplankton bloom. This study showed that marine microbes may constitute a significant part in the reservoir of POM in the Korea Strait.

Impacts of dam discharge on river environments and phytoplankton communities in a regulated river system, the lower Han River of South Korea

  • Jung, Seung Won;Kwon, Oh Youn;Yun, Suk Min;Joo, Hyoung Min;Kang, Jung-Hoon;Lee, Jin Hwan
    • Journal of Ecology and Environment
    • /
    • 제37권1호
    • /
    • pp.1-11
    • /
    • 2014
  • To understand the effects of fluctuations in dam discharge due to river environments and phytoplankton communities, we monitored such environments and phytoplankton communities biweekly, from February 2001 to February 2002 and from February 2004 to February 2005, in the lower Han River (LHR), South Korea. The phytoplankton abundance during the dry season was approximately two times higher than that during the rainy season. In particular, fluctuations in diatom assemblages, which constituted over 70% of the total phytoplankton abundance, were affected severely by the changes in the discharge. When a large quantity of water in a dam was discharged into the LHR, the conductivity and the concentrations of total nitrogen (TN), total phosphorus (TP), and dissolved inorganic phosphorus (DIP) decreased rapidly, whereas the concentrations of suspended solids (SS), dissolved inorganic nitrogen (DIN), and dissolved silica (DSi) increased immediately. Time-delayed relationship also revealed that the dam discharge had an immediately significant negative relationship with phytoplankton abundance. On the whole, fluctuations in phytoplankton communities in the LHR were influenced much more by hydrodynamics such as dam discharge than by the availability of nutrients. Thus, the variability in these concentrations usually parallels the strength of river flow that is associated with summer rainfall, with higher values during periods of high river discharge.

해양미생물과 식물플랑크톤의 상호관계 -1. 수영만의 해양세균과 식물플랑크톤 우점종 간의 상호관계- (Studies on Relationships between Marine Bacteria and Phytoplankton in Suyeong Bay -1. On Relationshops of Dominant Species between Marine Bacteria and Phytoplankton-)

  • 김동원;이원재
    • 한국수산과학회지
    • /
    • 제26권5호
    • /
    • pp.446-457
    • /
    • 1993
  • 1992년 1월부터 8월까지 해양세균과 식물플랑크톤의 상호관계를 알기 위해 미생물과 식물플랑크톤량 및 종의 분포를 조사하고 실험실에서의 세균종가 규조류인 Chaetoceros spp.의 배양에 의한 세균과의 관계를 조사하였다. 1. 전체 조사기간에 출현한 세균상증 Pseudomonas spp.가 $32.3\%$로 가장 우점했으며, bloom이 일어난 5월에 출현한 세균 중 Acinetobacter calcoaceticus와 Bacillus subtilis가 $51\%$로 우점했으며, 그 외에 Vibrio spp., Pseudomonas vesicularis가 주로 분리되었다. 2. 조사기간 동안 식물플랑크톤은 5월에 $3.3{\times}10^6cell/l$로 bloom을 형성했다. 우점종은 Chaetoceros spp.($62\%$)로 나타났으며 6월과 8월에 걸쳐 편모조류인 Prorocentrum triestinum과 Katodinum spp., Ceratium spp.가 $7.4{\times}10^3{\sim}3.2{\times}10^4$세포/l로 나타났다. 3. L1 broth의 농도에 따른 Pseudomonas vesicularis, Bacillus subtills, Acinetobacter calcoaceticus, Vibrio sp.의 성장을 조사한 결과 P. vesicularis는 L1 broth의 농도 증가할수록 성장이 느려지며 반대로 다른 균종은 L1 broth의 농도 증가와 함께 성장이 증가한 것으로 보아 Chaetoceros spp.의 증가가 P. vesicularis의 성장에 영향을 준 것으로 생각된다.

  • PDF

작은 만에서 식물플랑크톤 생체량과 생산력 변화에 대한 외부 물의 정기적인 침입 효과의 모델링 (Modeling the Effects of Periodic Intrusions of Outer Water on the Variation in the Phytoplankton Biomass and Productivity in a Small Embayment)

  • Ougiyama, Shu;Koizumi, Tsuneyoshi;Takeoka, Hidetaka;Yuichi, Hayami
    • 생태와환경
    • /
    • 제37권4호통권109호
    • /
    • pp.455-461
    • /
    • 2004
  • 본 연구는 Kitanada 만에 있어서 식물플랑크톤 생체량의 변동기구에 대한 세기와 주기성이 다른 두 가지 형태의 외양수유입 (급조(急潮) 및 bottom intrusion)의 영향을 만의 환경조건을 고려한 수식모델을 이용하여 분석하였다. 외양수 유입의 간격이 길어지고 진폭이 작아짐에 따라 만 내의 식물플랑크톤 생체량이 커졌으나, 이와는 반대로, 유입간격이 짧아지고 진폭이 커질수록 식물플랑크톤의 성장률은 높아졌다. 이 결과는 유입이 약해짐에 따라 만의 해수교환이 감소하고 만내의 식물플랑크톤이 높은 밀도로 축적됨을 시사하였다. 또한, 외양수유입에 의해 해수교환이 활발해짐에 따라 빛의 효율적 이용이 가능하여 식물플랑크톤의 성장률이 향상되었다.

On Conditions of Phytoplankton Blooms in the Coastal Waters of the North-Western East/Japan Sea

  • Zuenko, Yury;Selina, Marina;Stonik, Inna
    • Ocean Science Journal
    • /
    • 제41권1호
    • /
    • pp.31-41
    • /
    • 2006
  • Seasonal changes of abundance of the main phytoplankton groups of species (diatoms, dinoflagellates, chrysophytes, small flagellates and cryptophytes) and a set of environmental parameters were investigated in coastal and pre-estuarine waters of Peter the Great Bay (East/Japan Sea) in May-October of 1998 and 1999. Three periods of mass development were revealed: spring, summer and autumn blooms, with successive change of species. The conditions favourable for each group of species were determined. Driving mechanisms of the succession include nutrients transport through seasonal pycnocline by turbulent mixing, terrestrial nutrients supply by monsoon floods, nutrients supply by upwellings, and light control by the thickness of upper mixed layer. Summer succession could be explained by a simple SST-MLD diagram similar to Pingree S-kh diagram with sea surface temperature as indicator of stratification (S) and mixed layer depth as indicator of light availability (kh).

Synergistic effects of elevated carbon dioxide and sodium hypochlorite on survival and impairment of three phytoplankton species

  • Kim, Keunyong;Kim, Kwang Young;Kim, Ju-Hyoung;Kang, Eun Ju;Jeong, Hae Jin;Lee, Kitack
    • ALGAE
    • /
    • 제28권2호
    • /
    • pp.173-183
    • /
    • 2013
  • Sodium hypochlorite (NaOCl) is widely used to disinfect seawater in power plant cooling systems in order to reduce biofouling, and in ballast water treatment systems to prevent transport of exotic marine species. While the toxicity of NaOCl is expected to increase by ongoing ocean acidification, and many experimental studies have shown how algal calcification, photosynthesis and growth respond to ocean acidification, no studies have investigated the relationship between NaOCl toxicity and increased $CO_2$. Therefore, we investigated whether the impacts of NaOCl on survival, chlorophyll a (Chl-a), and effective quantum yield in three marine phytoplankton belonging to different taxonomic classes are increased under high $CO_2$ levels. Our results show that all biological parameters of the three species decreased under increasing NaOCl concentration, but increasing $CO_2$ concentration alone (from 450 to 715 ${\mu}atm$) had no effect on any of these parameters in the organisms. However, due to the synergistic effects between NaOCl and $CO_2$, the survival and Chl-a content in two of the species, Thalassiosira eccentrica and Heterosigma akashiwo, were significantly reduced under high $CO_2$ when NaOCl was also elevated. The results show that combined exposure to high $CO_2$ and NaOCl results in increasing toxicity of NaOCl in some marine phytoplankton. Consequently, greater caution with use of NaOCl will be required, as its use is widespread in coastal waters.

표층혼합층 생태계모델을 이용한 동해 식물플랑크톤의 계절변화 (Seasonal Variation of Phytoplankton in the East Sea Using A Surface Mixed Layer Ecosystem Model)

  • 김상우;기전풍;동옥지범
    • 한국수산과학회지
    • /
    • 제36권2호
    • /
    • pp.178-186
    • /
    • 2003
  • Seasonal variation of phytoplankton was investigated with surface mixed layer ecosystem model in the East Sea. The model consisted of four compartments (phytoplankton, zooplankton, nutrient, detritus) forced by mixed layer depths, photosynthetically available radiation and nutrient concentrations. From model results we estimated entrainment rate $2.5-4.0\;m{\cdot}day^{-1}$ to reproduce the two annual blooms, and reproduced seasonal variation of phytoplankton at southern and northern regions by the difference of surface winter mixed layer depth (MLD) using the entrainment rate value $3.0\;m{\cdot}day^{-1}$. The spring blooms in the southern and northern regions closely related to deepening of a winter surface MLD. In the southern region where MLD was shallow and phytoplankton spring bloom occurs one month in advance to the northern region where MLD was deep. The amount of light increases within the MLD during the onset of stratification and water temperature increases faster in spring in the southern region than the northern region. Decrease of phytoplankton was mainly affected by zooplankton grazing in the southern region and by nutrient exhaustion in the northern region. The fall bloom in the two regions was caused by the nutrient availability and entrainment on the phytoplankton.

Spatial distribution of phytoplankton in Gamak Bay in spring, with emphasis on small phytoplankton

  • Yeongji Oh;Yoonja Kang
    • 환경생물
    • /
    • 제40권4호
    • /
    • pp.374-386
    • /
    • 2022
  • Phytoplankton communities, with emphasis on picoplankton and nanoplankton, were investigated in Gamak Bay, South Korea, where freshwater input and coastal water intrusion shape ecosystem functions. Shellfish farms and fish farms are located in the inner bay and outer bay, respectively, and tides translocate uneaten food and urine production from aquaculture farms toward the inner bay. Water masses were distinctly different based on a significantly different density between the surface and bottom layer and among three water masses, including the inner bay, outer bay, and Yeosu Harbor. Phytoplankton communities were quantified using flow cytometry and size-fractionated chlorophyll-a (chl-a) was measured. Salinity was a principal variable separating phytoplankton communities between the surface and bottom layer, whereas Si(OH)4 controlled the communities in the inner bay, and NH4+ and PO43- governed the outer bay communities. While phycocyanin-containing (PC) cyanobacteria dominated in the outer bay, phycoerythrin-containing (PE) cyanobacteria dominance occurred with cryptophyte dominance, indicating that nutrients affected the distribution of pico- and nanoplankton and that cryptophytes potentially relied on a mixotrophic mode by feeding on PE cyanobacteria. Interestingly, picoeukaryotes and eukaryotes larger than 10 ㎛ were mostly responsible for the ecological niche in the western region of the bay. Given that chl-a levels have historically declined, our study highlights the potential importance of increased small phytoplankton in Gamak Bay. Particularly, we urge an examination of the ecological role of small phytoplankton in the food supply of cultivated marine organisms.