• Title/Summary/Keyword: Marine meteorology

Search Result 102, Processing Time 0.032 seconds

Wind characteristics of a strong typhoon in marine surface boundary layer

  • Song, Lili;Li, Q.S.;Chen, Wenchao;Qin, Peng;Huang, Haohui;He, Y.C.
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.1-15
    • /
    • 2012
  • High-resolution wind data were acquired from a 100-m high offshore tower during the passage of Typhoon Hagupit in September, 2008. The meteorological tower was equipped with an ultrasonic anemometer and a number of cup anemometers at heights between 10 and 100 m. Wind characteristics of the strong typhoon, such as mean wind speed and wind direction, turbulence intensity, turbulence integral length scale, gust factor and power spectra of wind velocity, vertical profiles of mean wind speed were investigated in detail based on the wind data recorded during the strong typhoon. The measured results revealed that the wind characteristics in different stages during the typhoon varied remarkably. Through comparison with non-typhoon wind measurements, the phenomena of enhanced levels of turbulence intensity, gust factors, turbulence integral length scale and spectral magnitudes in typhoon boundary layer were observed. The monitored data and analysis results are expected to be useful for the wind-resistant design of offshore structures and buildings on seashores in typhoon-prone regions.

Numerical Simulation of the Water Temperature in the Al-Zour Area of Kuwait

  • Lee, Myung Eun;Kim, Gunwoo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.334-343
    • /
    • 2019
  • The Al-Zour coastal area, located in southern Kuwait, is a region of concentrated industrial water use, seawater intake, and the outfall of existing power plants. The Al-Zour LNG import facility project is ongoing and there are two issues regarding the seawater temperature in this area that must be considered: variations in water temperature under local meteorology and an increase in water temperature due to the expansion of the thermal discharge of expanded power plant. MIKE 3 model was applied to simulate the water temperature from June to July, based on re-analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the thermal discharge input from adjacent power plants. The annual water temperatures of two candidate locations of the seawater intake for the Al-Zour LNG re-gasification facility were measured in 2017 and compared to the numerical results. It was determined that the daily seawater temperature is mainly affected by thermal plume dispersion oscillating with the phase of the tidal currents. The regional meteorological conditions such as air temperature and tidal currents, also contributed a great deal to the prediction of seawater temperature.

Variability of Mesoscale Eddies in the Pacific Ocean Simulated by an Eddy Resolving OGCM of $1/12^{\circ}$

  • Yim B.Y.;Noh Y.;You S.H.;Yoon J.H.;Qiu B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.133-136
    • /
    • 2006
  • The mesoscale eddy field in the North Pacific Ocean, simulated by a high resolution eddy-resolving OGCM ($1/12^{\circ}C$ horizontal resolution), was analyzed, and compared with satellite altimetry data of TOPEX/Poseidon. High levels of eddy kinetic energy (EKE) appear near the Kurosho, North Equatorial Current (NEC), and Subtropical Countercurrent (STCC) in the western part of the subropical gyre. In particlure, it was found that the EKE level of the STCC has a well-defined annual cycle, but no distinct annual cycle of the EKE exists in any other zonal current of the North Pacific Ocean.

  • PDF

Characteristics of Aerosol and Cloud Condensation Nuclei Concentrations Measured over the Yellow Sea on a Meteorological Research Vessel, GISANG 1 (기상 관측선 기상 1호에서 관측한 황해의 에어로졸과 구름응결핵 수농도 특성 연구)

  • Park, Minsu;Yum, Seong Soo;Kim, Najin;Cha, Joo Wan;Ryoo, Sang Boom
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.243-256
    • /
    • 2016
  • Total number concentration of aerosols larger than 10 nm ($N_{CN10}$), 3 nm ($N_{CN3}$), and cloud condensation nuclei ($N_{CCN}$) were measured during four different ship cruises over the Yellow Sea. Average values of $N_{CN10}$ and $N_{CCN}$ at 0.6% supersaturation were 6914 and $3353cm^{-3}$, respectively, and the minimum value of $N_{CN10}$ was $2000cm^{-3}$, suggesting significant anthropogenic influence even at relatively clean marine environment. Although $N_{CN10}$ and $N_{CN3}$ increased near the coast due to anthropogenic influence, $N_{CCN}$ was relatively constant and therefore $N_{CCN}/N_{CN10}$ ratio tended to decrease, suggesting that coastal aerosols were relatively less hygroscopic. In general $N_{CN10}$, $N_{CN3}$, and $N_{CCN}$ during the cruises seemed to be significantly influenced by wet scavenging effects (e.g. fog) and boundary layer height variation. Only one new particle formation (NPF) event was observed during the measurement period. Interestingly, the NPF event occurred during a dust storm event and spatial scale of the NPF event was estimated to be larger than 100 km. These results demonstrate that aerosol and CCN concentration over the Yellow Sea can vary due to various different factors.

Marine Environments in the Neighborhood of the Narodo as the First Outbreak Region of Cochlodinium polykrikoides Blooms (Cochlodinium polykrikoides 적조의 최초발생해역인 나로도 주변 해역의 해양환경)

  • Lee, Moon-Ock;Moon, Jin-Han
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.113-123
    • /
    • 2008
  • We have analyzed a long term data of marine environments, red tide information and meteorology acquired by NFRDI and KMA, in order to understand the characteristics of marine environments in the Narodo coastal waters which is known to be the first outbreak region of Cochlodinium polykrikoides blooms. During the period of from 1992 to 2007, Cochlodinium polykrikoides blooms have first occurred more often in August. However, the outbreak time of the blooms tended to be earlier annually, and in addition, the surface salinity also had a tendency to increase. Consequently, it suggested that there might be a relationship between the transition of the outbreak time of the blooms and salinity. On the other hand, insolation was relatively rich but precipitation was relatively scarce in Gohung Province, compared to Yeosu or Tongyeong, when Cochlodinium polykrikoides blooms first occur in Narodo coastal waters. Average water temperature and salinity in August in Narodo coastal waters were all higher than those in Gamak and Jinhae bays, suggesting that Narodo coastal waters are a region of relatively high water temperature and high salinity. Also, concentrations of nutrients and chlorophyll- a were significantly low than those in Jinhae Bay, which is known to be a eutrophicated region, while the overall water quality seemed to be similar to Gamak Bay. The results of PCA(Principal Component Analysis) proved that insolation and water temperature are the most important factors for the outbreak of Cochlodinium polykrikoides blooms in Narodo coastal waters while concentrations of COD and dissolved oxygen are secondly important. Furthermore, typhoons also appeared to be one of most important factors for the outbreak of Cochlodinium polykrikoides blooms.

  • PDF

Estimation of Annual Energy Production Based on Regression Measure-Correlative-Predict at Handong, the Northeastern Jeju Island (제주도 북동부 한동지역의 MCP 회귀모델식을 적용한 AEP계산에 대한 연구)

  • Ko, Jung-Woo;Moon, Seo-Jeong;Lee, Byung-Gul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.545-550
    • /
    • 2012
  • Wind resource assessment is necessary when designing wind farm. To get the assessment, we must use a long term(20 years) observed wind data but it is so hard. so that we usually measured more than a year on the planned site. From the wind data, we can calculate wind energy related with the wind farm site. However, it calculate wind energy to collect the long term data from Met-mast(Meteorology Mast) station on the site since the Met-mast is unstable from strong wind such as Typhoon or storm surge which is Non-periodic. To solve the lack of the long term data of the site, we usually derive new data from the long term observed data of AWS(Automatic Weather Station) around the wind farm area using mathematical interpolation method. The interpolation method is called MCP(Measure-Correlative-Predict). In this study, based on the MCP Regression Model proposed by us, we estimated the wind energy at Handong site using AEP(Annual Energy Production) from Gujwa AWS data in Jeju. The calculated wind energy at Handong was shown a good agreement between the predicted and the measured results based on the linear regression MCP. Short term AEP was about 7,475MW/year. Long term AEP was about 7,205MW/year. it showed an 3.6% of annual prediction different. It represents difference of 271MW in annual energy production. In comparison with 20years, it shows difference of 5,420MW, and this is about 9 months of energy production. From the results, we found that the proposed linear regression MCP method was very reasonable to estimate the wind resource of wind farm.

Development of Airborne Remote Sensing System for Monitoring Marine Meteorology (Sea Surface Wind and Temperature) (연안 해양기상(해상풍, 수온) 관측을 위한 항공기 원격탐사 시스템)

  • Kim, Duk-Jin;Cho, Yang-Ki;Kang, Ki-Mook;Kim, Jin-Woo;Kim, Seung-Hee
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.32-39
    • /
    • 2013
  • Although space-borne satellites are useful in obtaining information all around the world, they cannot observe at a suitable time and place. In order to overcome these limitations, an airborne remote sensing system was developed in this study. It is composed of a SAR sensor and a thermal infrared sensor. Additionally GPS, IMU, and thermometer/hygrometer were attached to the plane for radiometric and geometric calibration. The brightness of SAR image varies depending on surface roughness, and capillary waves on the sea surface, which are easily generated by sea winds, induce the surface roughness. Thus, sea surface wind can be estimated using the relationship between quantified SAR backscattering coefficient and the sea surface wind. On the other hand, thermal infrared sensor is sensitive to measure object's temperature. Sea surface temperature is obtained from the thermal infrared sensor after correcting the atmospheric effects which are located between sea surface and the sensor. Using these two remote sensing sensors mounted on airplane, four test flights were carried out along the west coast of Korea. The obtained SAR and thermal infrared images have shown that these images were useful enough to monitor coastal environment and estimate marine meteorology data.

APPLICATION OF HF COASTAL OCEAN RADAR TO TSUNAMI OBSERVATIONS

  • Heron, Mal;Prytz, Arnstein;Heron, Scott;Helzel, Thomas;Schlick, Thomas;Greenslade, Diana;Schulz, Eric
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.34-37
    • /
    • 2006
  • When tsunami waves propagate across open ocean they are steered by Coriolis force and refraction due to gentle gradients in the bathymetry on scales longer than the wavelength. When the wave encounters steep gradients at the edges of continental shelves and at the coast, the wave becomes non-linear and conservation of momentum produces squirts of surface current at the head of submerged canyons and in coastal bays. HF coastal ocean radar is well-conditioned to observe the current bursts at the edge of the continental shelf and give a warning of 40 minutes to 2 hours when the shelf is 50-200km wide. The period of tsunami waves is invariant over changes in bathymetry and is in the range 2-30 minutes. Wavelengths for tsunamis (in 500-3000 m depth) are in the range 8.5 to over 200 km and on a shelf where the depth is about 50 m (as in the Great Barrier Reef) the wavelengths are in the range 2.5 - 30 km. It is shown that the phased array HF ocean surface radar being deployed in the Great Barrier Reef (GBR) and operating in a routine way for mapping surface currents, can resolve surface current squirts from tsunamis in the wave period range 20-30 minutes and in the wavelength range greater than about 6 km. There is a trade-off between resolution of surface current speed and time resolution. If the radar is actively managed with automatic intervention during a tsunami alert period (triggered from the global seismic network) then it is estimated that the time resolution of the GBR radar may be reduced to about 2 minutes, which corresponds to a capability to detect tsunamis at the shelf edge in the period range 5-30 minutes. It is estimated that the lower limit of squirt velocity detection at the shelf edge would correspond to a tsunami with water elevation of less than 5 cm in the open ocean. This means that the GBR HF radar is well-conditioned for use as a monitor of small and medium scale tsunamis, and has the potential to contribute to the understanding of tsunami genesis research.

  • PDF

UHF Electromagnetic Perturbation due to the fluctuation of Conductivity in a Fault Zone (단층대의 전기전도도 변동에 의한 UHF 전자기장 교란)

  • Lee Choon-Ki;Lee Heuisoon;Kwon Byung-Doo;Oh SeokHoon;Lee Duk Kee
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.87-94
    • /
    • 2003
  • ULF geomagnetic field anomalies related to earthquakes have been reported and a mechnism that magnetic field variations could be generated by the induced telluric current due to the high frequency fluctuation of conductivity in a fault Bone have been proposed. In this study, we calculated electromagnetic anomalies using a simple fault model and investigated the possibility of significant perturbation. Since low frequency electromagnetic fields are modulated by the high frequency oscillation of conductivity and the modulated fields are concentrated in a narrow ULF band, the electromagnetic fields in ULF band could be perturbed significantly. The amplitude of electromagnetic field anomaly depends on various factors: the geometry and conductivity of fault zone, the magnitude and frequency of conductivity fluctuation, the resistivity structure of crust or mantle, the frequency bandwidth of observational data and so on. Therefore, it is strongly required to reveal the deep resistivity structure of crust a.: well ah the structure of fault zone and to ,select the optimal observation frequency band for the observation of electromagnetic activities related with earthquakes.

Moment Magnitude Determination Using P wave of Broadband Data (광대역 지진자료의 P파를 이용한 모멘트 규모 결정)

  • Hwang, Eui-Hong;Lee, Woo-Dong;Jo, Bong-Gon;Jo, Beom-Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.10 no.1
    • /
    • pp.1-12
    • /
    • 2007
  • A method to quickly estimate broadband moment magnitudes (Mwp) to warn regional and teleseismic tsunamigenic earthquakes is tested for application of the method to the different seismic observation environment. In this study, the Mwp is calculated by integrating far-field P-wave or pP-wave of vertical component of displacement seismograms in time domain from earthquakes, having magnitude greater than 5.0 and occurred in and around the Korean peninsula from 2000 to 2006. We carefully set up the size of the time window for the computations to exclude S wave phases and other phases following after the P wave phase. The P wave velocities and the densities from the averaged Korean crustal model are used in the computations. Instrumental correction was performed to remove dependency on the seismograph. The Mwp after the instrumental correction is about 0.1 greater than the Mwp before the correction. The comparison of our results to the those of foreign agencies such as JMA and Havard CMT catalogues shows a higher degree of similarity. Thus our results provide an effective tool to estimate the earthquake size, as well as to issue the necessary information to a tsunami warning system when the effective earthquake occurs around the peninsula.

  • PDF