• Title/Summary/Keyword: Marine bivalvia

Search Result 94, Processing Time 0.02 seconds

Ultrastructure of Oocytes During Oogenesis and Oocyte Degeneration Associated with Follicle Cells in Female Sinonovacula constricta(BIVALVIA: PHARIDAE) in Western Korea

  • Chung, Ee-Yung;Ko, Cheol-Hwan;Kang, Hee-Woong;Choi, Ki-Ho;Jun, Je-Cheon
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.313-319
    • /
    • 2008
  • The ultrastructure of oocytes during oogenesis and oocyte degeneration associated with follicle cells in female Sinonovacula constricta(Lamarck, 1818) were investigated by electron microscope observations. Ovarian follicles are surrounded by a matrix of vesicular connective tissue cells(VCT cells). VCT cells contain large quantities of glycogen particles and several lipid droplets in their cytoplasm. It is suggested that VCT cells act as a source of nutrients for vitellogenesis during oogenesis. In early vitellogenic oocytes, several coated vesicles, which appear at the basal region of the oocyte, lead to the formation of membrane-bound vesicles via endocytosis. The uptake of nutritive materials in coated vesicles formed by endocytosis appears through the formation of coated pits on the oolemma during vitellogenesis. During the late stage of oogenesis, yolk precursors(yolk granules), mitochondria and lipid droplets are present in the cytoplasm of late vitellogenic oocytes. In particular, proteinaceous yolk granules containing several different components are intermingles and form immature yolk granules. In the mature oocyte, small immature yolk granules are intermingled and form large mature yolk granules. Vitellogenesis occurs through a process of autosynthesis, involving combined activity of the Golgi complex, mitochondria and rough endoplasmic reticulum in the cytoplasm of vitellogenic oocytes. The process of heterosynthesis is where extraovarian precursors are incorporated into oocytes by endocytosis at the basal region of early vitellogenic oocytes before the formation of the vitelline coat. Follicle cells appear to play an important role in vitellogenesis and oocyte degeneration. The functions of attached follicle cells to the oocyte during oocyte degeneration are phagocytosis and digestion of phagosomes originating from oocyte degeneration. After digestion of phagosomes, it is assumed that the function of follicle cells can permit a transfer of yolk precursors necessary for vitellogenesis and allows for the accumulation of glycogen and lipid during oocyte degeneration, which can be employed by vitellogenic oocytes. Follicle cells of S. constricta may possess a lysosomal system for induction of oocyte breakdown and might resorb phagosomes in the cytoplasm for nutrient accumulation during oocyte degeneration.

Spermiogenesis and Taxonomic Value of Sperm Morphologies of Two Species in Veneridae (Bivalvia: Heterodonta)

  • Kim, Jin-Hee;Kim, Sung-Han
    • The Korean Journal of Malacology
    • /
    • v.27 no.2
    • /
    • pp.149-157
    • /
    • 2011
  • Some characteristics of the formations of acrosomal vesicles during the late stage of spermatids during spermiogenesis and taxonomical charateristics of sperm morphology in male two species (Saxidomus purpurata and Meretrix petechialis) in the family Veneridae were investigated by electron microscope observations. In two species, the morphologies of the spermatozoa have the primitive type and are similar to those of other bivalves in that it contains a short midpiece with five mitochondria surrounding the centrioles. The morphologies of the sperm nuclear types of S. purpurata and M. petechialis in Veneridae have the curved cylindrical and cylinderical type, respectively. And the acrosome shapes of two species are the same cap-shape type. In particular, the axial filament is not found in the lumen of the acrosome of two species, however, subacrosomal material are observed in the subacrosomal spaces between the anterior nuclear fossa and the acrosomal vesicle of two species. The spermatozoon of S. purpurata is approximately 46-$52{\mu}m$ in length, including a curved sperm nucleus (about $3.75{\mu}m$ in length), a long acrosome (about $0.40{\mu}m$ in length),and a tail flagellum (about 45-$47{\mu}m$ long). And the spermatozoon of M. petechialis is approximately 47-$50{\mu}m$ in length including a slightly curved sperm nucleus (about $1.50{\mu}m$ in length), an acrosome (about $0.56{\mu}m$ in length) and tail flagellum (44-$48{\mu}m$ in length). In two species, the axoneme of the sperm tail flagellum of each species consists of nine pairs of microtubules at the periphery and a pair of cental doublets at the center. Therefore, the axoneme of the sperm tail flagellum shows a 9 + 2 structure. In particular, taxonomically important some charateristics of sperm morphologies of two species in the family Veneridae are acrosomal morphology of the sperm, The axial filament is not found in the acrosome as seen in a few species of the family Veneridae in the subclass Heterodonta. The acrosomal vesicle is composed of right, left basal rings and the apex part of the acrosomal vesicle. In particular, right and left basal rings show electron opaque part (region), while the apex part of the acrosomal vesicle shows electron lucent part (region). These charateristics belong to the subclass Heterodonta, unlikely a characteristic of the subclass Pteriomorphia showing all part of the acrosome being composed of electron opaque part (region). Therefore, it is easy to distinguish the families or the subclasses by the acrosomal structures. The number of mitochondria in the midpiece of the sperm of S. purpurata and M. petechialis in Veneridae are five. However, the number of mitochondria in the midpiece of the sperm in most species of Veneridae in the subclass Heterodonta are four. Therefore, the number of mitochondria of the sperm midpiece of two species are exceptionally 5, and it is only exceptional case in the species in Veneridae in the subclass Heterodonta. Except these cases, the number of mitochondria in the sperm midpiece in all families in the subclass Heterodontaare are 4, and now widely used in taxonomic analyses.

Analysis of Sinjido Marine Ecosystem in 1994 using a Trophic Flow Model (영양흐름모형을 이용한 1994년 신지도 해양생태계 해석)

  • Kang, Yun-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.4
    • /
    • pp.180-195
    • /
    • 2011
  • A balanced trophic model for Sinjido marine ecosystem was constructed using ECOPATH model and data obtained 1994 in the region. The model integrates available information on biomass and food spectrum, and analyses ecosystem properties, dynamics of the main species populations and the key trophic pathways of the system, and then compares these results with those of other marine environments. The model comprises 17 groups of benthic algae, phytoplankton, zooplankton, gastropoda, polychaeta, bivalvia, echinodermata, crustacean, cephalopoda, goby, flatfish, rays and skates, croaker, blenny, conger, flatheads, and detritus. The model shows trophic levels of 1.0~4.0 from primary producers and detritus to top predator as flathead group. The model estimates total biomass(B) of 0.1 $kgWW/m^2$, total net primary production(PP) of 1.6 $kgWW/m^2/yr$, total system throughput(TST) of 3.4 $kgWW/m^2/yr$ and TST's components of consumption 7%, exports 43%, respiratory flows 4% and flows into detritus 46%. The model also calculates PP/TR of 0.012, PP/B of 0.015, omnivory index(OI) of 0.12, Fin's cycling index(FCI) of 0.7%, Fin's mean path length(MPL) of2.11, ascendancy(A) of 4.1 $kgWW/m^2/yr$ bits, development capacity(C) of 8.2 $kgWW/m^2/yr$ bits and A/C of 51%. In particular this study focuses the analysis of mixed trophic impacts and describes the indirect impact of a groupb upon another through mediating one based on 4 types. A large proportion of total export in TST means higher exchange rate in the study region than in semi enclosed basins, which seems by strong tidal currents along the channels between islands, called Sinjido, Choyakdo and Saengildo. Among ecosystem theory and cycling indices, B, TST, PP/TR, FCI, MPL and OI are shown low, indicating the system is not fully mature according to Odum's theory. Additionally, high A/C reveals the maximum capacity of the region is small. To sum up, the study region has high exports of trophic flow and low capacity to develop, and reaches a development stage in the moment. This is a pilot research applied to the Sinjido in terms of trophic flow and food web system such that it may be helpful for comparison and management of the ecosystem in the future.

Spatial distribution of Benthic Polychaetous Communities in Deugryang Bay, Southern Coast of Korea (득량만 저서다모류군집의 공간분포)

  • Kim, Yong-Hyun;Shin, Hyun-Chool
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.1
    • /
    • pp.20-31
    • /
    • 2002
  • This study was carried out to investigate the composition and the distribution of the benthic polychaetous communities in Deugryang Bay, semi-enclosed bays, on the southern coast of Korea and to deduce temporal changes in community with the comparison of the past studies. In Deugryang Bay, benthic polychaetous community structure was investigated on the base of the samples from 98 stations in 1996 and 1997. The main facies of surface sediment was clayey silt. The overall benthic macrofaunal density was 871 ind./m$^{2}$. The density was highest in the middle part of the bay because Musculus senhousia (Bivalvia) and cumaceans (Crustacea) had their highest densities in some stations. Benthic polychaetes were comprised of 100 species with a mean density of 138 ind./m$^{2}$. Their abundances were higher in the inner bay, in the middle bay, and in the mouth of bay, but poor community structures were established in the whole bay. The dominant species over 1.0 percentage were composed of the total 21 species, and they occupied 78.3% of the total abundance of the benthic polychaetes. The most dominant species was Lumbrineris longifolia (9.3%), followed by Eteone longa (7.3%), Heteromastus filifomis (7.1%), Sternaspis scutata (6.1%). From the cluster analysis, the study area could be divided into three station groups. Station group AI was located in the inner bay and in the shallow coastal region, and its most dominant species was Heteromastus filiformis. At the station group AII in the mouth of bay and in some channel region, its most dominant species were Lumbrineris longifolia and Eteone longa. And at the station group B located in middle part of the bay, the most dominant specis was Sternaspis scutata. In comparison with previous studies, the benthic polychaetous community experienced great change in the view of species number, density and dominant species. The dominant species were Sternaspis scutata and Eteone longa, but their densities declined greatly. Instead of these species, Lumbrineris longifolia and Heteromastus filiformis, known as the potential organic enrichment indicator species, appeared to the new dominant species even if their low densities. These facts mean that Deugryang Bay was maintained yet as little organic enriched area compared to other bays on the coast of Korea, but needed some caution of marine environmental management.