• Title/Summary/Keyword: Marine Traffic Environment

Search Result 347, Processing Time 0.029 seconds

A Study on Optimum Control of Marine Traffic -In the Domain of Control Sector- (해상 교통량의 효율적 관리 방안에 관하여 -(1) 교통 관제 해역의 경우-)

  • 윤명오;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.2
    • /
    • pp.39-47
    • /
    • 1991
  • As per the rapid development of world economics the marine traffic volume was increased accordingly and caused frequent disasters in human lives and natural environment in the consequence of accidents. As the result of the above they started to establish Vessel Traffic System(VTS) and separation scheme in waterway from 1960' to prevent the marin traffic accident but the problem of safety at sea appears now as neither fully defined nor sufficiently analysed. At the present, the dominant factor in establishing the strategy of marine traffic has been safety of navigation concerning only with the ship, but the risk of society derives almost wholly from the nature of cargo. To measure the degree of danger for each ship there is suggested concept of safety factor numbers denoting the level of latent danger in connection with ship and her cargo. In this paper, where the strategy of VTS is put on controlling density of safety factor for control area. it suggested algorithms how to assign the vessels and also to get optimal sequence of vessels located to a sector in the sense of minimizing the passage delay. For the formulation of problem, min max and 0-1 programming methods are applied and developed heuristic algorithm is presented with numerical example to improve the efficiency of calculation.

  • PDF

A Basic Study on Marine Traffic Assessment in Mombasa Approach Channel-I

  • Otoi, Onyango Shem;Park, Young-Soo;Park, Jin-Soo
    • Journal of Navigation and Port Research
    • /
    • v.40 no.5
    • /
    • pp.257-263
    • /
    • 2016
  • Mombasa is the principle port of Kenya, serving inland countries in Eastern and central Africa. Mombasa port has undergone a massive infrastructure upgrade and dredging works with an expectation that more vessels and large post Panamax ships will be able to enter Mombasa port. Therefore, it is vital to carry out a marine traffic risk assessment in order to quantify the degree of navigation safety needed in the Mombasa approach channel and also to evaluate the navigation risk imposed on transit traffic by local ferry traffic. In this paper, a marine traffic risk assessment is carried out using the IWRAP mk2, Environmental Stress (ES) model, and the PARK model. Risk assessment results show that Likoni area has an unacceptable stress/risk ranking at 20.7% by the ES model and 38.89% by the PARK model. The IWRAP mk2 model shows that the crossing area has the highest risk of crossing collision and the area at the entrance to the inner channel has a high risk of grounding. The conclusions derived from this study will provide the basis for proposing the most effective countermeasure to improve navigation safety in the Mombasa approach channel.

A Basic Study on Marine Traffic Assessment in Mombasa Approach Channel-I

  • Otoi, Onyango Shem;Park, Young-Soo;Park, Jin-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.81-84
    • /
    • 2016
  • Mombasa is the principle port of Kenya, serving hinter countries in Eastern and central Africa. Mombasa port has undergone a massive infrastructure upgrade and dredging works with an expectation that more vessels and large post Panamax ships will be able to call at Mombasa port. Therefore, it is vital to carry out a marine traffic risk assessment so as to quantify the degree of navigation safety on Mombasa approach channel and also to evaluate navigation risk imposed on transit traffic by local ferry traffic. In this paper marine traffic risk assessment is carried out using IWRAP mk2, Environmental Stress model, and PARK model. Risk assessment results show that Likoni area has unacceptable stress/ risk ranking at 20.7% on ES model and 38.89% by PARK model. IWRAP mk2 model shows that crossing area has the highest risk of crossing collision and the area at the entrance to inner channel has a high risk of grounding. The conclusions derived from this study will provide the basis for proposing the most effective countermeasure so as to improve navigation safety in Mombasa approach channel.

  • PDF

A Study on Optimum Control of Marine Traffic(II) - In the Domain of Passage - (해상 교통량의 효율적 관리 방안에 관하여 (II) - 일반 수로의 경우 -)

  • 윤명오;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.3
    • /
    • pp.1-11
    • /
    • 1991
  • As increasing needs of marine transportation , world merchant fleet and ship's size were enlarged and it caused frequent disasters in human lives and natural environment. By the reason of the above, they started to establish the Vessel Traffic System (VTS) at the European coast in 1960' and most of advanced contries established and managed it to prevent the sea traffic accidents in these days. The concept of traffic control at sea can be divided into three types. First, the initial gathering of informations about ship's identity and movement etc.. Second, monitoring of the traffic flow and amendment of instructions. Third , organization and direction of ships by allocating routes and speeds. Where the goal of traffic control is safety of traffics and developing effectiveness of navigation channel, if traffic volume is less tan channel capacity then the above first or second level of control would be sufficient but if it is bigger than that , more positive policy of control should be adopted as same as third type of the above. In this paper where the strategy of VTS is focused on the control of traffic density to be spread equality, as possible , all over the navigation channels and also improvement of effectiveness , it suggests algorithm to assign the vessels to the channels with balanced traffic density , and other algorithms using D.P. to sequence the vessels assigned to one channel in optimum order which decreases the mean waiting time in sense of channel effectiveness with numerical examples.

  • PDF

The Development of a Collision Warning System for Small-Sized Vessels Using WAVE Communication Technology (WAVE 통신을 이용한 소형선박 충돌경보시스템 개발 연구)

  • Kang, Won-Sik;Kim, Young-Du;Lee, Myoung-Ki;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.151-158
    • /
    • 2019
  • Wireless communication technology (WAVE) for vehicles, which is the core technology behind the next-generation intelligent transport system (C-ITS), is used to deliver information about vehicles to prevent traffic accidents and traffic situations that may arise between vehicles and infrastructure. Similar traffic issues often arise in marine scenarios. Currently, AIS is being used as a means of transmitting information such as the status of relative vessels, but research is being carried out to solve problems with AIS such as overloading by applying wireless communication technology for vehicles to the sea. In this study, a collision warning system suitable for small-sized vessels was developed based on the marine application of WAVE for vehicles verified through prior research, and the adequacy of this collision warning system was reviewed through a practical test. It is expected that this system will contribute greatly to future e-Navigation applications or self-driving ships as well as to preventing marine accidents.

Measurement of Low-Frequency Ocean Noise by a Self-Recording Hydrophone (자동기록식 수중청음기를 이용한 저주파 해양잡음의 측정)

  • Kim, Bong-Chae;Kim, Byoung-Nam;Cho, Hong-Sang
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.311-316
    • /
    • 2007
  • Ocean noise may be used for monitoring wind speed and rainfall rate on the sea surface, as well as for tracking whales' migration routes. In particular, low-frequency ocean noise has recently been of concern with relation to the behavior of marine mammals. Low-frequency ocean noise has been increasing over the past few decades due to increase of ship traffic and offshore oil industry activities. Mechanical noise such as flow noise and cable strumming noise may be induced if low-frequency ocean noise is measured by cabled traditional hydrophone in high current areas. To successfully measure low-frequency ocean noise in a shallow water environment with strong current, we developed a self-recording hydrophone. This paper describes the main configurations of the self-recording hydrophone and presents some results on measured data.

A Study on the Route Operation & Safety Improvement in Gwangyang Traffic Safety Designated Area Based on ES Model (ES모델을 통한 광양항 교통안전특정해역의 항로운영과 안전성 향상에 관한 연구)

  • Kim, Deug-Bong;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.153-159
    • /
    • 2016
  • Gwangyang traffic safety designated area is composed of 3 fairways (Deep water fairway, inbound fairway, and outbound fairway). However, inbound vessels can't use this passage because of Samyeo rock and artificial fishing banks in inbound route. The problem with the rocks and artificial fishing banks has been raised by ship navigators and authorities of the port. This research is about the safety evaluation and management plan of the passage, and we conducted maritime traffic simulation using a model based on a ship operator risks. As a result, assuming that future marine traffic volume is the same as the present, and if the ship operators use 3 fairways and not two, it showed risk reduction of 46.4 % (vessels over 50,000 DWT using DW route) and 57.1 % (vessels over 10,000 DWT using DW route). Also, in a traffic volume condition which is the same as the present, to induce vessels over 50,000 DWT to use DW route is effective in mitigating of risks. Meanwhile, in a condition which increased the traffic volume by 150 %, it is more effective to induce vessels to use DW route. This research is the result of analysis using the model based on ship operator risks, and not cost-effectiveness analysis on the removal of Samyeo rock and artifical fishing banks. This research is expected to be used on setting up the sea route and management plan (particularly, restriction on passing DW route).

Study on Standardization Method of non-Standard AtoN Management and Operation System (비표준 항로표지 관리운영시스템 표준화 방안 연구)

  • Park, In-Hwan;Kim, Hyung-Lae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.119-121
    • /
    • 2018
  • We intend to improve the navigation system integrated management system that is constructed and operated to meet the changes in marine traffic environment and prevent large-scale marine casualties and human casualties by applying the standard specification of integrated management system of marine traffic facilities in 2012. I t reuses the existing system resources and improves the operating software and standardizes the system installation to facilitate operation and maintenance.

  • PDF