• 제목/요약/키워드: Marine Force

검색결과 724건 처리시간 0.022초

Comparative Study on Various Ductile Fracture Models for Marine Structural Steel EH36

  • Park, Sung-Ju;Lee, Kangsu;Cerik, Burak Can;Choung, Joonmo
    • 한국해양공학회지
    • /
    • 제33권3호
    • /
    • pp.259-271
    • /
    • 2019
  • It is important to obtain reasonable predictions of the extent of the damage during maritime accidents such as ship collisions and groundings. Many fracture models based on different mechanical backgrounds have been proposed and can be used to estimate the extent of damage involving ductile fracture. The goal of this study was to compare the damage extents provided by some selected fracture models. Instead of performing a new series of material constant calibration tests, the fracture test results for the ship building steel EH36 obtained by Park et al. (2019) were used which included specimens with different geometries such as central hole, pure shear, and notched tensile specimens. The test results were compared with seven ductile fracture surfaces: Johnson-Cook, Cockcroft-Latham-Oh, Bai-Wierzbicki, Modified Mohr-Coulomb, Lou-Huh, Maximum shear stress, and Hosford-Coulomb. The linear damage accumulation law was applied to consider the effect of the loading path on each fracture surface. The Swift-Voce combined constitutive model was used to accurately define the flow stress in a large strain region. The reliability of these simulations was verified by the good agreement between the axial tension force elongation relations captured from the tests and simulations without fracture assignment. The material constants corresponding to each fracture surface were calibrated using an optimization technique with the minimized object function of the residual sum of errors between the simulated and predicted stress triaxiality and load angle parameter values to fracture initiation. The reliabilities of the calibrated material constants of B-W, MMC, L-H, and HC were the best, whereas there was a high residual sum of errors in the case of the MMS, C-L-O, and J-C models. The most accurate fracture predictions for the fracture specimens were made by the B-W, MMC, L-H, and HC models.

구리합금그물감의 공극률 및 영각에 의한 유속 감소와 유체역학적 특성에 관한 연구 (A study on flow velocity reduction and hydrodynamic characteristics of copper alloy netting by solidity ratios and attack angles)

  • 강아림;이지훈
    • 수산해양기술연구
    • /
    • 제55권1호
    • /
    • pp.62-73
    • /
    • 2019
  • Recently, copper alloy netting has been proposed as a material for aquaculture facilities that can be set in harsh offshore environments. To design a cage made of copper alloy netting, it is necessary to calculate the flow of water through the netting and force of external sources on the netting. Therefore, this study measured and analyzed the current velocity reduction after passing through the netting and the hydrodynamic forces acting on the netting using copper alloy netting with nine solidity ratios. As a result of the reduction rate of the flow velocity through the netting, the flow reduction rate was increased as the solidity ratio of netting was increased. The flow reduction rate was also increased as the attack angle on the netting was decreased. In analyzing the resistance on the netting, we also discovered that resistance was increased with increase in the flow velocity and solidity ratio. An analysis of the hydrodynamic coefficient acting on the netting is shown that the drag coefficient tends to increase as the attack angle increases. We also analyzed the hydrodynamic coefficient according to the variation of the Reynolds number. When the drag coefficients acting on the netting were analyzed with the different Reynolds numbers, the Reynolds number increased from over 0.3 m/s to a relative constant. Finally, the copper alloy nettings had a smaller velocity reduction rate when comparing the flow velocity reduction rate between copper alloy nettings and nylon nettings.

Icevaning control of an Arctic offshore vessel and its experimental validation

  • Kim, Young-Shik;Kim, Jinwhan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.208-222
    • /
    • 2021
  • Managing with the presence of sea ice is the primary challenge in the operation of floating platforms in the Arctic region. It is widely accepted that offshore structures operating in Arctic conditions need station-keeping methods as well as ice management by icebreakers. Dynamic Positioning (DP) is one of the station-keeping methods that can provide mobility and flexibility in marine operations. The presence of sea ice generates complex external forces and moments acting on the vessel, which need to be counteracted by the DP system. In this paper, an icevaning control algorithm is proposed that enables Arctic offshore vessels to perform DP operations. The proposed icevaning control enables each vessel to be oriented toward the direction of the mean environmental force induced by ice drifting so as to improve the operational safety and reduce the overall thruster power consumption by having minimum external disturbances naturally. A mathematical model of an Arctic offshore vessel is summarized for the development of the new icevaning control algorithm. To determine the icevaning action of the Arctic offshore vessel without any measurements and estimation of ice conditions including ice drift, task and null space are defined in the vessel model, and the control law is formulated in the task space. A backstepping technique is utilized to handle the nonlinearity of the Arctic offshore vessel's dynamic model, and the Lyapunov stability theory is applied to guarantee the stability of the proposed icevaning control algorithm. Experiments are conducted in the ice tank of the Korea Research Institute of Ships and Ocean Engineering to demonstrate the feasibility of the proposed approach.

Changes in the Hydrodynamic Characteristics of Ships During Port Maneuvers

  • Mai, Thi Loan;Vo, Anh Khoa;Jeon, Myungjun;Yoon, Hyeon Kyu
    • 한국해양공학회지
    • /
    • 제36권3호
    • /
    • pp.143-152
    • /
    • 2022
  • To reach a port, a ship must pass through a shallow water zone where seabed effects alter the hydrodynamics acting on the ship. This study examined the maneuvering characteristics of an autonomous surface ship at 3-DOF (Degree of freedom) motion in deep water and shallow water based on the in-port speed of 1.54 m/s. The CFD (Computational fluid dynamics) method was used as a specialized tool in naval hydrodynamics based on the RANS (Reynolds-averaged Navier-Stoke) solver for maneuvering prediction. A virtual captive model test in CFD with various constrained motions, such as static drift, circular motion, and combined circular motion with drift, was performed to determine the hydrodynamic forces and moments of the ship. In addition, a model test was performed in a square tank for a static drift test in deep water to verify the accuracy of the CFD method by comparing the hydrodynamic forces and moments. The results showed changes in hydrodynamic forces and moments in deep and shallow water, with the latter increasing dramatically in very shallow water. The velocity fields demonstrated an increasing change in velocity as water became shallower. The least-squares method was applied to obtain the hydrodynamic coefficients by distinguishing a linear and non-linear model of the hydrodynamic force models. The course stability, maneuverability, and collision avoidance ability were evaluated from the estimated hydrodynamic coefficients. The hydrodynamic characteristics showed that the course stability improved in extremely shallow water. The maneuverability was satisfied with IMO (2002) except for extremely shallow water, and collision avoidance ability was a good performance in deep and shallow water.

Computational Fluid Dynamics를 이용한 부유식 새꼬막 채묘장치의 유동 특성에 관한 연구 (A study on the flow characteristics of floating seedling equipment using computational fluid dynamics)

  • 편용범;이경훈;최환석;이인태;김형호;이창제
    • 수산해양기술연구
    • /
    • 제59권2호
    • /
    • pp.164-171
    • /
    • 2023
  • This study analyzed the flow inside floating seedling equipment for Scapharca subcrenata. Due to the aging society of fishing villages, it is impossible to continuously input the labor force. Therefore, it is necessary to improve efficiency. Scapharca subcrenata has high per capita consumption. It serves as an important aquatic food resource. Scapharca subcrenata culture tends to be highly dependent on the natural environment. Production of Scapharca subcrenata is difficult to predict with low stability. In the past, manpower directly installed bamboo nets in mudflats. The seedling equipment devised in this study is a floating type and can be freely moved on the sea according to the prediction of Scapharca subcrenata generation. The flow around the floating seedling equipment was analyzed by numerical analysis. The physical phenomena of the flow around the net inside the floating seedling equipment were visualized. As a result, the space between the floating seedling equipment and the bottom net and the space between the net groups showed a lower flow rate than the inlet flow rate. It is expected that the low flow rate of the floating seedling equipment will have a positive effect on the attachment of Scapharca subcrenata.

수심에 따른 실습선 백경호의 조종성능 추정 (Estimation of maneuvering characteristic of training ship Baek-Kyung according to water depth)

  • 이춘기;류경진;이유원;김수형
    • 수산해양기술연구
    • /
    • 제59권3호
    • /
    • pp.261-263
    • /
    • 2023
  • Recently, universities of fisheries and institutions related to fisheries are actively carrying out a project to build new fisheries training ships. These new fisheries training ships are significantly larger in size and longer in length than the previous ships. In addition, these new ships basically have space that can accommodate more than 100 crew and passenger. On the other hand, they are excluded from IMO maneuverability evaluation since the size of these ships are still less than 100 m in length (LBP). These results have had an impact on the study of maneuverability of fishing vessels including the fisheries training ships. Against these backgrounds, the authors conducted a study to estimate the maneuvering characteristics of fisheries training ship Baek-Kyung according to depth in order to prepare a maneuvering characteristic index that enables the large fisheries training ships to navigate more safely using a modified empirical formula. It was confirmed that the maneuvering characteristics of Baek-Kyung changed significantly as the values of the hydrodynamic force coefficients changed as the water depth gradually decreased from around 1.5 (approx. 8 m in depth) of the ratio of the water depth to the ship draft. The results of this study will not only help navigators understand the maneuvering characteristics of Baek-Kyung, but also serve as an indicator when navigating in shallow water. In addition, the accumulation of these results will serve as a basis for future study on maneuverability of fishing vessel types.

Cyclone separator의 형상에 따른 미세플라스틱 입자 거동 수치해석 연구 (Numerical Analysis Study on Micro-plastic Particle behavior According to the Shape of Cyclone Separator)

  • 강인선;서원준;유동호;김영식;김형철;임석연
    • Tribology and Lubricants
    • /
    • 제40권2호
    • /
    • pp.61-66
    • /
    • 2024
  • Micro-plastics are synthetic high-differentiation chemicals of less than 5mm in size, and are deposited not only on the sea surface but also on the coast. If these micro-plastics are not properly separated from the sand, they can threaten marine ecosystems. Thus, in the present study, we aimed to apply cyclone separator to the micro-plastic retrieval in order to predict the movement of particles according to the formation of the cyclone separator by applying the centrifugal force of the particle in accordance with the rotational movement of the air. The cyclone separator has three shapes, the first one is a typical interconnected cyclone separator. The second is the horn form, except for the cylinder in a regular cyclone separator, and the third is a form that increases the horn's height twice in the second. The numerical analysis simulation of the Cyclone separator used the Fluent software package. The output speed of the Cyclone separator was 5 to 13m/s at 1m/s intervals. The simulated particles include sand, Styrofoam, PET, PP, and PU. Sand particles are assigned a fixed diameter of 2mm, while other particles have a diameter of 3mm. As a result of the analysis, the first form was not separated from plastic. The Styrofoam separation efficiency in the second showed its highest efficiency at 72.7% at 7m/s, and the efficiency decreased after 12m/s as the sand particles were mixed into the plastic attachment location. In the third form, the separation efficiency of Styrofoam at 12m/s was highest at 67.9%.

해양레저용 활주형선의 공기저항 및 온실 가스 배출에 대한 연구 (A Study on Air Resistance and Greenhouse Gas Emissions of an Ocean Leisure Planning Boat)

  • 김용섭;황선규
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제16권3호
    • /
    • pp.202-210
    • /
    • 2013
  • 최근 소득증대로 인해 해양레저에 대한 관심이 높아짐에 따라 해양레저용으로 많이 이용되는 활주형선의 선형설계와 생산에 대한 많은 연구 개발이 필요해지고 있다. 지금까지 수행된 활주형선의 저항에 대한 연구를 분석해본 결과 활주형선은 속도가 빠르고 침수표면적이 매우 작기 때문에 일반 선박과는 다른 저항 특성을 가지고 있음을 알게 되었다. 본 연구는 현재 조선소와 추진기 및 엔진 생산업체에서 유효마력 산정에 널리 활용되는 Savitsky공식을 이용하여 연구대상 활주형선의 전저항을 먼저 계산한 후 이론해석과 풍동실험을 통하여 활주형선 주위에 대한 유동특성을 분석하고 속도와 트림각도 변화에 따른 공기저항, 양력 등을 구하였다. 또한 이 결과를 이용하여 전저항에 대한 공기저항의 비율을 속도와 트림각 변화에 대하여 이론해석결과와 실험결과를 비교하고 분석하였으며 본 연구결과는 좀 더 정확한 유효마력 추정에 활용되어 산출근거를 무시하고 막연하게 고마력 엔진을 장착하는 폐단을 막을 수 있을 것으로 기대된다. 한편 기상 이변으로 인한 자연재해가 증가하면서 온실가스에 대한 관심이 높아지고 있다. 국제해사기구(IMO)에서는 선박의 설계 단계에서 적용되는 에너지 효율 지수(EEDI)와 해상을 운항할 때 적용되는 에너지 효율지수(EEOI)를 제정하여 선박으로부터 배출되는 온실가스를 줄이려 하고 있다. 그러나 이 규정은 총톤수(GT) 400톤 이상의 선박에 적용될 예정이므로 해양레저용 선박과 같은 소형 선박은 대형 선박에 비해 단위 출력 당 온실가스 배출량은 오히려 많지만 이 IMO 규정에 의한 규제를 받지 않는다. 따라서 본 연구는 소형선박인 해양레저용 활주형선의 온실 가스 배출량을 산출함으로써 이에 대한 문제점을 제기하고 소형선박에 적용될 수 EEDI 계산법 제정의 필요성을 제시하였다.

동중국해 북부해역의 해양환경 장기변동 (Long-term Variation in Ocean Environmental Conditions of the Northern East China Sea)

  • 윤상철;윤석현;황재동;서영상;윤이용
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제18권3호
    • /
    • pp.189-206
    • /
    • 2015
  • 우리나라 주변해역의 해양환경에 밀접한 영향이 있는 동중국해 북부해역의 해양환경 특성을 이해하기 위하여 해양환경 인자의 장기변동 양상을 파악하여 동중국해 북부해역의 해양특성을 구명하기 위하여 연구를 수행하였다. 조사 방법은 1995년부터 2014년까지 20년간 계절에 따라 국립수산과학원 한국해양자료센터(KODC : Korea Oceanographic Data Center)의 동중국해 북부해역의 해양조사 자료(수온, 염분, 용존산소, 영양염, 엽록소-a)를 이용하였다. 연구기간 동안 동중국해 북부해역에 영향을 미치는 주요 수괴는 장강희석수, 대만난류수, 황해저층냉수, 쿠로시오 기원수로 구분되었다. 표층과 아표층에 형성되는 장강희석수와 대만난류수는 20년간 세력이 약화되었으며, 중층에 형성되는 쿠로시오 기원수의 세기는 현저히 감소하는 추세를 나타내었다. 그러나 황해저층냉수는 세력이 확장되는 추세를 나타내었다. 인산염과 규산염은 감소하는 추세였으며 인산염은 2009년 이후 표층에서 고갈되는 양상을 나타내었다. 이러한 원인으로는 장강희석수와 대만난류수를 통해 유입되는 영양염의 농도가 낮기 때문인 것으로 판단된다. 엽록소-a의 농도는 연구기간 동안 증가하는 경향을 나타냈으며 이러한 원인은 수온증가와 황해저층냉수로부터 영양염 공급, 샨샤댐 건설에 의한 부유물질 감소에 따른 광투과 증가의 영향으로 판단된다.

국가의 해양주권 수호를 위한 한국해군의 전력건설 방향 (The Construction Direction of the ROK NAVY for the Protection of Marine Sovereignty)

  • 신인균
    • Strategy21
    • /
    • 통권30호
    • /
    • pp.99-142
    • /
    • 2012
  • Withe increased North Korea's security threats, the South Korean navy has been faced with deteriorating security environment. While North Korea has increased asymmetric forces in the maritime and underwater with the development of nuclear weapons, and China and Japan have made a large investment in the buildup of naval forces, the power of the Pacific fleet of the US, a key ally is expected to be weakened. The biggest threat comes from China's intervention in case of full-scale war with North Korea, but low-density conflict issues are also serious problems. North Korea has violated the Armistice Agreement 2,660 times since the end of Korean War, among which the number of marine provocations reaches 1,430 times, and the tension over the NLL issue has been intensifying. With tension mounting between Korea and Japan over the Dokdo issue and conflict escalating with China over Ieo do Islet, the US Navy has confronted situation where it cannot fully concentrate on the security of the Korean peninsula, which leads to need for strengthening of South Korea's naval forces. Let's look at naval forces of neighboring countries. North Korea is threatening South Korean navy with its increased asymmetric forces, including submarines. China has achieved the remarkable development of naval forces since the promotion of 3-step plan to strengthen naval power from 1989, and it now retains highly modernized naval forces. Japan makes an investment in the construction of stat of the art warship every year. Since Japan's warship boasts of its advanced performance, Japan's Maritime Self Defense Force is evaluated the second most powerful behind the US Navy on the assumption that submarine power is not included in the naval forces. In this situation, naval power construction of South Korean navy should be done in phases, focusing on the followings; First, military strength to repel the energy warship quickly without any damage in case of battle with North Korea needs to be secured. Second, it is necessary to develop abilities to discourage the use of nuclear weapons of North Korea and attack its nuclear facilities in case of emergency. Third, construction of military power to suppress armed provocations from China and Japan is required. Based on the above naval power construction methods, the direction of power construction is suggested as follows. The sea fleet needs to build up its war potential to defeat the naval forces of North Korea quickly and participate in anti-submarine operations in response to North Korea's provocations. The task fleet should be composed of 3 task flotilla and retain the power to support the sea fleet and suppress the occurrence of maritime disputes with neighboring countries. In addition, it is necessary to expand submarine power, a high value power asset in preparation for establishment of submarine headquarters in 2015, develop anti-submarine helicopter and load SLAM-ER missile onto P-3C patrol aircraft. In case of maine corps, division class military force should be able to conduct landing operations. It takes more than 10 years to construct a new warship. Accordingly, it is necessary to establish plans for naval power construction carefully in consideration of reality and future. For the naval forces to safeguard maritime sovereignty and contribute to national security, the acquisition of a huge budget and buildup of military power is required. In this regard, enhancement of naval power can be achieved only through national, political and military understanding and agreement. It is necessary to let the nation know that modern naval forces with improved weapon system can serve as comprehensive armed forces to secure the command of the sea, perform defense of territory and territorial sky and attack the enemy's strategic facilities and budget inputted in the naval forces is the essential source for early end of the war and minimization of damage to the people. If the naval power construction is not realized, we can be faced with a national disgrace of usurpation of national sovereignty of 100 years ago. Accordingly, the strengthening of naval forces must be realized.

  • PDF