• Title/Summary/Keyword: Marine Concrete

Search Result 411, Processing Time 0.025 seconds

Analysis of Chloride Ion Penetration for Harbor Concrete Structure with In-situation Environment (항만 콘크리트 구조물의 현장환경변화에 따른 염소이온 침투해석)

  • Han, Sang-Hun;Jang, In-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.225-228
    • /
    • 2004
  • In order to estimate the chloride ion penetration, the model, which considers diffusion and sorption, is proposed on the basis of Finite Element Method (FEM). The FEM program provides the estimation of chloride concentration according to cyclic humidity and sorption. After the humidity diffusion analysis is carried out, the chloride ion diffusion and sorption analysis are conducted on the basis of the preestimated humidity data in each element. Each element has different analysis variables at different ages and locations. At early ages and constant outer humidity, the difference between inner and outer relative humidity causes the chloride ion penetration by sorption. As the humidity diffusion reduces the difference with age, the effect of sorption on the chloride ion penetration decreases. By the way, the cyclic humidity increases the effect of sorption on the chloride ion penetration at early ages, and the quantity of chloride ion around steel at later ages. Therefore, the in-situ analysis of chloride ion penetration for marine concrete structures must be performed considering the cyclic humidity condition and the long term sorption.

  • PDF

Determination of Structural Lightweight Concrete Mix Proportion for Floating Concrete Structures (콘크리트 부유구조체 적용을 위한 구조용 경량콘크리트의 최적배합비 선정)

  • Kim, Min Ook;Qian, Xudong;Lee, Myung Kue;Park, Woo-Sun;Jeong, Shin Taek;Oh, Nam Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.315-325
    • /
    • 2017
  • This study aims to provide information for the design and use of structural lightweight concrete (SLWC) for floating concrete structures in a marine environment. An experimental program was set up and comprehensive experimental campaign were carried out to determine SLWC mix proportions that can satisfy specified concrete strength, density, and slump values all of them were determined from previous research. Comparisons with previous SLWC mix designs that have been utilized for actual floating concrete structures were made. Key aspects needed to be considered regarding to the use of SLWC for floating marine concrete structures were discussed.

Applicability of Colormetric Method for Estimation of Chloride Penetration in Concrete Structures (콘크리트 구조물의 염화물 침투 특성 파악을 위한 변색법의 적용성)

  • Yang Eun-Ik;Kim Myung-Yu;Leem Young-Moon;Park Hae-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.931-938
    • /
    • 2005
  • When concrete structures are exposed under marine condition for a long time, the steel in concrete is corroded due to the ingression of chlorides in the seawater. Because the damages of corrosion resulting from the chloride ion are very serious, many researches have been performed. Silver nitrate colormetric method that can measure easily penetration depth of chloride ion has been executed, recent)y. However, characteristics of silver nitrate colormetric method were not fully examined. Therefore, the objective of this paper Is to study the applicability of colormetric method. For the purpose of this, effect factors and reaction mechanism of colormetric method were investigated, and the colormetric method is applied for marine concrete structures. According to the results of silver nitrate colored method, two reactions such as white reaction of AgCl and brown reaction of AgOH were shown when $AgNO_3$ was sprayed in splited section. And velocity constant ratio(K) of two reactions appeared that white reaction, AgCl reacts with the fast speed by 3240. When the colormetric method was applied in concrete, it is reasonable that $AgNO_3$ solution more than 0.05N concentration was sprayed. It is confirmed that the colormetric method is useful tool for estimating the chloride of concrete structures in situ. The average chloride amount of colored parts indicates $0.9kg/m^3$ per concrete unit weight.

Improvement in the Syllabus of Maritime English for High School and the Method of Examination for Certification -Relating to the 4th and 5th Class Marine Officer License Examination- (고등학교(高等學校) 해사영어(海事英語) 교과영역(敎科領域)과 평가방법(評價方法)의 개선(改善) - 4·5급(級) 해기사(海技士) 면허시험(免許試驗)과 관련하여 -)

  • Choe, Jong-Hwa;Kim, Yeong-Sik;Ko, Dae-Kweon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.2 no.1
    • /
    • pp.29-35
    • /
    • 1989
  • It is indispensable for the marine officers who are engaged in the international voyage to make command of maritime English fluently. The Marine Officers Act in Korea which is under ammending in 1989 prescribes the proportion of maritime Englishin English examination is made to be 60% for the 4th and 5th class marine officer-license examination. A concrete syllabus or content of maritime English is not established yet with the exception of a general prescription of minimun knowledge required for certification of marine officers in the IMO/STCW Convention. The authors, who rewrote the maritime English textbook for the course of the fisheries high, schools and the merchant marine high schools, settled the syllabi of nautical English and marine engineering English for the course as follows : 1. The syllabus of nautical English, includes maritime English readings, the IMO English dialogue on port entry, writing of logbooks, night order books, and docking and repair specifications. 2. The syllabus of marine engineering English includes maritime English readings, dialogue on oil supply, writing of engine logbooks and oil record books, standing orders, and docking and repair specifications. The authors propose that the realm of these class marine officer-license examination on maritime English should be limited within in the above mentioned textbook. As maritime English is made to be included in the 4th and 5th marine officer liscence examination since 1989, high schools concerned need to reform the curricula to complete at least 6 units for this subject. On the other hand, the competent authority of this examination must secure questions as much as possible to promote the reliability of them.

  • PDF

A Study on Socio-economic Impact Assessment System for Marine Oil Spill (유류유출시 사회경제적 영향평가 제도 연구)

  • Lee, Moon-Suk;Kwon, Suk-Jae;Park, Se-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2010
  • Marine oil spill accidents not only devastates marine ecosystem but also Ins significant adverse socio-economic impact on local community whose living is dependent on clean marine system Although the Marine Environment Management Act of the Republic of Korea stipulates tim marine pollution impact survey must be conducted at the time of the oil spill, the articles do not provide specifics or concrete survey items for socio-economic impact assessment Moreover, there are redundancy questions in the provisions related to socio-economic impact assessment. This paper examined several difficulties encountered in carrying out the socio-economic impact assessment for marine oil spill as required in the law, and presented some recommendation., for the plan to improve the assessment mechanism systematically through the development of the research categories and indicators of socio-economic impact assessment.

Effect of Passing Aged Years and Coating Thickness on Corrosion Properties of Reinforcing Steel in Mortar (W/C:0.5) (모르타르(W/C:0.5)내의 철근의 부식 특성에 미치는 재령 년수와 피복두께의 영향)

  • Moon, Kyung-Man;Lee, Sung-Yul;Jeong, Jin-A;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • The structures of reinforced concrete have been extensively increased with rapid development of industrial society. Futhermore, these reinforced concretes are easy to expose to severe corrosive environments such as seawater, contaminated water, acid rain and seashore etc.. Thus, corrosion problem of steel bar embedded in concrete is very important in terms of safety and economical point of view. In this study, specimens having six different coating thickness (W/C:0.5) were prepared and immersed in flowing seawater for five years to evaluate the effect of coating thickness and immersion time on corrosion property. The polarization characteristics of these embedded steel bars were investigated using electrochemical methods such as corrosion potential, anodic polarization curve, and impedance. At the 20-day immersion, the corrosion potentials exhibited increasingly nobler values with coating thickness. However, after 5-yr. immersion their values were shifted in the negative direction, and the relationship between corrosion potential and coating thickness was not shown. Although 5-yr. immersion lowered corrosion potential, 5-yr. immersion did not increase corrosion rate. In addition, after 5-yr. immersion, the thinner cover thickness, corrosion current density was decreased with thinning coating thickness. It is due to the fact that ease incorporation of water, dissolved oxygen and chloride ion into a steel surface caused corrosion and hence, leaded to the formation of corrosion product. The corrosion product plays the role as a corrosion barrier and increases polarization resistance. The corrosion probability evaluated depending on corrosion potential may not be a good method for predicting corrosion probability. Hence, the parameters including cover thickness and passed aged years as well as corrosion potential is suggested to be considered for better assessment of corrosion probability of reinforced steel exposed to partially or fully in marine environment for long years.

A Numerical Model for the Freeze-Thaw Damages in Concrete Structures

  • Cho Tae-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.857-868
    • /
    • 2005
  • This paper deals with the accumulated damage in concrete structures due to the cyclic freeze-thaw as an environmental load. The cyclic ice body nucleation and growth processes in porous systems are affected by the thermo-physical and mass transport properties, and gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and diffusion of chloride ion effects are hard to be identified in tests, and there has been no analytic model for the combined degradations. The main objective is to determine the driving force and evaluate the reduced strength and stiffness by freeze-thaw. For the development of computational model of those coupled deterioration, micro-pore structure characterization, pore pressure based on the thermodynamic equilibrium, time and temperature dependent super-cooling with or without deicing salts, nonlinear-fracture constitutive relation for the evaluation of internal damage, and the effect of entrained air pores (EA) has been modeled numerically. As a result, the amount of ice volume with temperature dependent surface tensions, freezing pressure and resulting deformations, and cycle and temperature dependent pore volume has been calculated and compared with available test results. The developed computational program can be combined with DuCOM, which can calculate the early aged strength, heat of hydration, micro-pore volume, shrinkage, transportation of free water in concrete. Therefore, the developed model can be applied to evaluate those various practical degradation cases as well.

Flexural Performance of Polypropylene Fiber Reinforced EVA Concrete (폴리프로필렌 섬유보강 EVA 콘크리트의 휨 성능)

  • Sung, Chan Yong;Nam, Ki Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.83-90
    • /
    • 2016
  • This study was performed to evaluate the effective analysis of flexural performance for polypropylene fiber (PF) reinforced EVA concrete that can be used in marine bridge, tunnel and agricultural structures under flexural load. The control design was applied in ready mixed concrete using 10 % fly ash of total binder weight used in batch plant. On the basis of the control mix design, there was designed mix types that contained PF ranged from 0 % to 0.5 % by volume ratio into two mix types of using 0 % and 5.0 % EVA contents of total binder weight. Before evaluating the flexural performance, we tested compressive strength and flexural strength to evaluate whether polypropylene fiber reinforced concrete could be used or not in site. The method of flexural performance evaluation was applied by ASTM C 1609. These results showed the maximum compressive strength and flexural strength was measured at each E5P1 and E5P2. Concrete reinforced with PF exhibited deflection-softening behavior. In the concrete reinforced with 0.4 % PF contents and containing 5.0 % EVA, the flexural performance was the best.

Corrosion Characteristics of Reinforced Steel Bar Emedded in Multiple Mortar Specimen(W/C:0.5) Aged 5 Years in Seawater

  • Moon, Kyung-Man;Takeo, Oki;Won, Jong-Pil;Park, Dong-Hyun;Kim, Yun-Hae
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • Reinforced concrete structures have been increasingly widely used in numerous industrial fields. These structures are often exposed to severely corrosive environments such as seawater, contaminated water, acid rain, and the seashore. Thus, the corrosion problems that occur with the steel bars embedded in concrete are very important from the safety and economic points of view. In this study, the effects of the cover thickness on the corrosion properties of reinforced steel bars embedded in multiple mortar test specimens immersed in seawater for 5 years were investigated using electrochemical methods such as the corrosion potentials, polarization curves, cyclic voltammograms, galvanostat, and potentiostat. The corrosion potentials shifted in the noble direction, and the value of the AC impedance also exhibited a higher value with increasing cover thickness. Furthermore, the polarization resistance increased with increasing cover thickness, which means that the oxide film that is deposited on the surface of a steel bar surrounded by alkali environment exhibits better corrosion resistance because the water, chloride ions and dissolved oxygen have difficulty penerating to the surface of the steel bar with increasing cover thickness. Consequently, it is considered that the corrosion resistance of reinforced steel can be improved by increasing the cover thickness. However, the corrosion resistance values of a steel bar estimated by measuring the corrosion potential, impedance and polarization resistance were not in good agreement with its corrosion resistance obtained by polarization curves.

A Study for Improving Properties of Antiwashout Underwater Concrete Mixed with Mineral Admixtures (광물질 혼화재를 혼합한 수중불분리성 콘크리트의 물성 향상을 위한 연구)

  • 문한영;신국재;이창수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.409-419
    • /
    • 2002
  • Nowadays, antiwashout underwater concrete is widely used for constructing underwater concrete structures but they, especially placed in marine environment, can be easily attacked by chemical ions such as SO$\^$2-/$\_$4/ Cl$\^$-/ and Mg$\^$2+/, so the quality and capability of concrete structures go down. In this paper, to solve and improve those matters, flyash and GGBFS(ground granulated blast furnace slag) were used as partial replacements for ordinary portland cement. As results of experiments for fundamental properties of antiwashout underwater concrete containing 10, 20, 30% of flyash and 40, 50, 60 % of GGBFS respectively, setting time, air contents, suspended solids and pH value were satisfied with the "Standard Specification of Antiwashout Admixtures for Concrete" prescribed by KSCE, and also slump flow, efflux time and elevation of head were more improved than that of control concrete. From the compressive strength test, it was revealed that the antiwashout underwater concrete containing mineral admixtures(flyash and GGBFS) is more effective for long term compressive strength than control concrete. An attempt to know how durable when they are under chemical attack has also been done by immersing in chemical solutions that were x2 artificial seawater, 5 % sulphuric acid solution, 10%, sodium sulfate solution and 10% calcium chloride solution. After immersion test for 91days, XRD analysis was carried out to investigate the reactants between cement hydrates and chemical ions and some crystalline such as gypsum ettringite and Fridel′s salt were confirmed.