• 제목/요약/키워드: Marine Atmospheric Boundary Layer

검색결과 27건 처리시간 0.03초

해안 대기 표층의 난류와 해안 대기 경계층의 구조 (Turbulence of the Coastal Atmospheric Surface Layer and Structure of the Coastal Atmospheric Boundary Layer)

  • 권병혁
    • 수산해양교육연구
    • /
    • 제17권3호
    • /
    • pp.404-412
    • /
    • 2005
  • The surface energy budget depends on many factors, such as the type of surface, the soil moisture and the vegetation canopy, the geographical location, daily, monthly and seasonal variations, and weather conditions. In the coastal region, the surface is not homogeneous at various scales for instance water, sand, mud, tall grass, and crops. The energy balance over the vegetation canopy was analyzed with the optical energy balance measuring system. The latent heat flux was more intensive than the sensible heat flux. The sensible heat flux was very small in summer due to the canopy effect and higher in spring and autumn. In summer the development of the atmospheric boundary depended on rather the vertical shear of wind than the sensible heat flux.

Spatial Analysis on Marine Atmosphere Boundary Layer Features of SAR Imagery Using Empirical Mode Decomposition

  • Jo, Young-Heon;Oliveira, Gustavo Henrique;Yan, Xiao-Hai
    • 대한원격탐사학회지
    • /
    • 제33권4호
    • /
    • pp.351-358
    • /
    • 2017
  • A new method to decompose the footprints of marine atmosphere boundary layer (MABL) on Synthetic Aperture Radar (SAR) imagery into characteristic spatial scales is proposed. Using two-dimensional Empirical Mode Decomposition (EMD) we obtain three Intrinsic Mode Functions (IMFs), which mainly present longitudinal rolls, three-dimensional cells and atmospheric gravity waves (AGW). The rolls and cells have spatial scales between 3.0 km and 3.8 km and between 5.3 km and 7.1 km, respectively. Based on previous observations and mixed-layer similarity theory, we estimated MABL's depths that vary from 0.95 km to 1.2 km over the rolls and from 3.0 km to 3.8 km over the cells. The AGW has maximum spectrum at 14.3 km wavelength. The method developed in this work can be used to decompose other satellite imageries into individual features through characteristic spatial scales.

울릉도에서 구름 유입시 관측한 해양대기경계층의 열수지에 관한 사례연구 (A Case Study on the Heat budget of the Marine Atmosphere Boundary Layer due to inflow of cloud on observation at Ulleungdo)

  • 김희종;윤일희;권병혁
    • 한국지구과학회지
    • /
    • 제25권7호
    • /
    • pp.629-636
    • /
    • 2004
  • 구름이 유입하는 경우 해양대기경계층의 발달을 분석하기 위하여, 울릉도에서 관측한 레윈존데 자료와 AWS 자료, 위성사진, 동해에 설치된 부이 자료를 이용하였다. 이 자료를 이용하여 열의 이류와 표층 열속, 구름 유입에 따른 복사에너지를 추정하였다. 혼합층 내의 열 변화 및 혼합층의 발달을 표층 열속과 구름에 의한 장파복사속으로 설명하였다. 열속의 변화를 알아보기 위해 벌크법을 이용하였다. 울릉도, 동해상의 부이, 포항에서 관측한 자료를 이용한 열수지 방정식으로 대기경계층의 열보존 관계를 분석하였다. 구름의 유입으로 인해 일몰 후 지면의 복사냉각이 방해되고, 구름에서 장파복사가 방출된다. 그로 인해 야간에 오히려 기온이 증가하였다. 또 남서쪽으로부터 따뜻한 공기가 이류되어, 하층 대기의 온도를 증가시켰다. 이러한 이유로 혼합층이 파괴되지 않고, 잔류층을 형성하며 남아있었다.

이어도 해양종합과학기지에서의 에어로솔 수 농도 변동 (The Fluctuations of Aerosol Number Concentration in the leodo Ocean Research Station)

  • 박성화;이동인;서길종;유철환;장민;강미영;장상민;김동철;최창섭;이병걸
    • 한국환경과학회지
    • /
    • 제18권7호
    • /
    • pp.721-733
    • /
    • 2009
  • To examine the fluctuations of aerosol number concentration with different size in the boundary layer of marine area during summer season, aerosol particles were assayed in the Ieodo Ocean Research Station, which is located 419 km southwest of Marado, the southernmost island of Korea, from 24 June to 4 July, 2008. The Laser Particle Counter (LPC) was used to measure the size of aerosol particles and NCEP/NCAR reanalysis data and sounding data were used to analyze the synoptic condition. The distribution of aerosol number concentration had a large variation from bigger particles more than 3 ${\mu}m$ in diameter to smaller particles more than 1 ${\mu}m$ in diameter with wind direction during precipitation. The aerosol number concentration decreased with increasing temperature. An increase (decrease) of small size of aerosol (0.3${\sim}$0.5 ${\mu}m$ in diameter) number concentration was induced by convergence (divergence) of the wind fields. The aerosol number concentration of bigger size more than 3 ${\mu}m$ in diameter after precipitation was removed as much as 89${\sim}$94% compared with aerosol number concentration before precipitation. It is considered that the larger aerosol particles would be more efficient for scavenging at marine boundary layer. In addition, the aerosol number concentration with divergence and convergence could be related with the occurrence and mechanism of aerosol in marine boundary layer.

오염의 영향을 받지 않은 해양 boundary layer에서의 $H_2O$$_2$, $CH_3$OOH, 그리고 HCHO에 대한 난류수송과 대기화학의 영향 (Influence of turbulent transport and chemistry on the distribution of $H_2O$$_2$, $CH_3$OOH, and HCHO in the remote marine boundary layer)

  • Wonil Chang;Lee, Meehye
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2002년도 추계학술대회 논문집
    • /
    • pp.223-224
    • /
    • 2002
  • This study is motivated by the discrepancies found in previous studies that compared the observed photochemically reactive species in the marine boundary layer (MBL) with the model simulations. In particular, HCHO was underpredicted in PEM-Tropics (B) and overpredicted in TRACE-A, $H_2O$$_2$ overpredicted, $CH_3$OOH overpredicted, and $CH_3$OH significantly overpredicted (Thompson et al., 1993; Heikes et at., 1996; Davis et al., 1996; Jacob et al., 1996; Schultz et al., 1997; Suhre et al., 1998). (omitted)

  • PDF

Overall Conversion Efficiency for Dimethylsulfide to Sulfur Dioxide in the Marine Boundary Layer-An Overview

  • Shon, Zang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제18권E2호
    • /
    • pp.107-120
    • /
    • 2002
  • Dimethyl sulfide (DMS) is the major sulfur gas released from the ocean. The atmospheric DMS released from the ocean is oxidized mainly by hydroxyl (OH) radical during the day and nitrate (NO$_3$) radical at night to form sulfur dioxide (SO$_2$) as well as other stable products. The oxidation mechanism of DMS via OH has been known to proceed by two channels; abstraction and addition channels. The major intermediate product of the addition channel has been known to be dimethylsulfoxide (DMSO) based on laboratory chamber studies and field experiments. However, a branching ratio for DMSO formation is still uncertain. The reaction of DMSO with OH ultimately produces SO$_2$and dimethylsulfone. The major product of the abstraction channel has known to be SO$_2$from laboratory chamber studies. But overall conversion efficiency for DMS to SO$_2$from DMS oxidation is still inconsistent in the literature. Based on laboratory and field studies, the conversion efficiency from the abstraction channel is likely to be greater than 0.5, while that from the addition channel is likely to be greater than 0.6. Overall conversion efficiency from DMS to SO$_2$might be greater than 0.5 based on the above two values in the remote marine boundary layer (MBL). This high efficiency in the remote MBL is supported by strong coupling between DMS and SO$_2$measurements with high temporal resolution.

A comparative study of the ionic composition of aerosols from the North Sea and a North Sea coastal area

  • Lee, Jong-Min;Schrems, Otto
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2001년도 추계학술대회 논문집
    • /
    • pp.47-48
    • /
    • 2001
  • It is well known that atmospheric aerosols play an important role in the radiation balance of the earth and meteorological processes as well as in atmospheric chemistry. Aerosols may origin from both natural and/or anthropogenic sources. Thus, the chemical composition of aerosols can vary considerably. For example, the chemical composition of marine aerosol has been the subject of a considerable number of investigations, including the evaluation of long-range transport of anthropogenic constituents on the chemistry of the remote marine boundary layer. (omitted)

  • PDF

REMOTE SENSING OF ATMOSPHERIC FRONTAL DYNAMICS OVER THE OCEAN

  • Levy, Gad;Patoux, Jerome
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.1003-1006
    • /
    • 2006
  • Frontal regions in midlatitude storms exhibit a wide range of behavior, which can be observed by remote sensors. These include decay, strengthening, rotating, and sometimes spawning of new cyclones. Here we refine and apply recent theories of front and frontal wave development to a case of a front clearly observed and analyzed in remote sensing data. By applying innovative analysis techniques to the data we assess the respective roles of ageostrophy, background deformation, and Boundary Layer processes in determining the evolution of the surface front. Our analysis comprises of diagnosis of the terms appearing in the vorticity and divergence equations using remotely sensed observations.

  • PDF

연안복합지형에서 바람폭풍의 진화 (Evolution of Wind Storm over Coastal Complex Terrain)

  • 최효;서장원;남재철
    • 한국환경과학회지
    • /
    • 제11권9호
    • /
    • pp.865-880
    • /
    • 2002
  • As prevailing synoptic scale westerly wind blowing over high steep Mt. Taegulyang in the west of Kangnung coastal city toward the Sea of Japan became downslope wind and easterly upslope wind combined with both valley wind and sea breeze(valley-sea breeze) also blew from the sea toward the top of the mountain, two different kinds of wind regimes confronted each other in the mid of eastern slope of the mountain and further downward motion of downlsope wind along the eastern slope of the mountain should be prohibited by the upslope wind. Then, the upslope wind away from the eastern slope of the mountain went up to 1700m height over the ground, becoming an easterly return flow in the upper level of the sea. Two kinds of circulations were detected with a small one in the coastal sea and a large one from the coast toward the open sea. Convective boundary layer was developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west, while a thickness of thermal internal boundary layer(TIBL) form the coast along the eastern slope of the mountain was only confined to less than 200m. After sunset, under no prohibition of upslope wind, westerly downslope wind blew from the top of the mountain toward the coastal basin and the downslope wind should be intensified by both mountain wind and land breeze(mountain-land breeze) induced by nighttime radiative cooling of the ground surfaces, resulting in the formation of downslope wind storm. The wind storm caused the development of internal gravity waves with hydraulic jump motion bounding up toward the upper level of the sea in the coastal plain and relatively moderate wind on the sea.

한반도 남동해안 해상풍 모의에 적합한 경계층 물리방안 연구 (Study on planetary boundary layer schemes suitable for simulation of sea surface wind in the southeastern coastal area, Korea)

  • 김유근;정주희;배주현;송상근;서장원
    • 한국환경과학회지
    • /
    • 제14권11호
    • /
    • pp.1015-1026
    • /
    • 2005
  • The southeastern coastal area of the Korean peninsula has a complex terrain including an irregular coastline and moderately high mountains. This implies that mesoscale circulations such as mountain-valley breeze and land-sea breeze can play an important role in wind field and ocean forcing. In this study, to improve the accuracy of complex coastal rind field(surface wind and sea surface wind), we carried out the sensitivity experiments based on PBL schemes in PSU/NCAR Mesoscale Model (MM5), which is being used in the operational system at Korea Meteorological Administration. Four widely used PBL parameterization schemes in sensitivity experiments were chosen: Medium-Range Forecast (MRF), High-resolution Blackadar, Eta, and Gayno-Seaman scheme. Thereafter, case(2004. 8. 26 - 8. 27) of weak-gradient flows was simulated, and the time series and the vertical profiles of the simulated wind speed and wind direction were compared with those of hourly surface observations (AWS, BUOY) and QuikSCAT data. In the simulated results, the strength of rind speed of all schemes was overestimated in complex coastal regions, while that of about four different schemes was underestimated in islands and over the sea. Sea surface wind using the Eta scheme showed the highest wind speed over the sea and its distribution was similar to the observational data. Horizontal distribution of the simulated wind direction was very similar to that of real observational data in case of all schemes. Simulated and observed vertical distribution of wind field was also similar under boundary layer(about 1 km), however the simulated wind speed was underestimated in upper layer.