• Title/Summary/Keyword: Marching cube algorithm

Search Result 19, Processing Time 0.122 seconds

A study on the finite element modeling of femur based marching cube algorithm (Marching cube 알고리즘을 이용한 대퇴골의 유한요소 모델링에 관한 연구)

  • 곽명근;오택열;변창환;이은택;유용석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1074-1077
    • /
    • 2002
  • Biomechanical behavior of the human femur is very important in various clinical situations. In this study, the data of FE models based on DICOM file exported from Computed tomography(CT). We generated FE models(voxel model, tetra model) of human femur using CT slide image. We compared them with Yon Mises stress results derived from finite element analysis(FEA). Comparing the two models, we found a correlation of them. As a result, the tetra model based proposed marching cube algorithm is a valid and accurate method to predict parameters of the complex biomechanical behavior of human femur.

  • PDF

Offsetting of Triangular Net using Distance Fields (거리장을 이용한 삼각망의 옵셋팅)

  • Yoo, Dong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.148-157
    • /
    • 2007
  • A new method which uses distance fields scheme and marching cube algorithm is proposed in order to get an accurate offset model of arbitrary shapes composed of triangular net. In the method, the space bounding the triangular net is divided into smaller cells. For the efficient calculation of distance fields, valid cells which will generate a portion of offset model are selected previously by the suggested detection algorithm. These valid cells are divided again into much smaller voxels which assure required accuracy. At each voxel distance fields are created by calculating the minimum distances between corner points of voxels and triangular net. After generating the whole distance fields, the offset surface were constructed by using the conventional marching cube algorithm together with mesh smoothing scheme. The effectiveness and validity of this new offset method was demonstrated by performing numerical experiments for the various types of triangular net.

3D Reconstruction Algorithm using Stereo Matching and the Marching Cubes with Intermediate Iso-surface (스테레오 정합과 중간 등위면 마칭큐브를 이용한 3차원 재구성)

  • Cho In Je;Chai Young Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.3
    • /
    • pp.173-180
    • /
    • 2005
  • This paper proposes an effective algorithm that combines both the stereo matching and the marching cube algorithm. By applying the stereo matching technique to an image obtained from various angles, 3D geometry data are acquired, and using the camera extrinsic parameter, the images are combined. After reconstructing the combined data into mesh using the image index, the normal vector equivalent to each point is obtained and the mesh smoothing is processed. This paper describes the successive processes and techniques on the 3D mesh reconstruction, and by proposing the intermediate iso- surface algorithm. Therefore it improves the 3D data instability problem caused when using the conventional marching cube algorithm.

Generation of Triangular Mesh of Coronary Artery Using Mesh Merging (메쉬 병합을 통한 관상동맥의 삼각 표면 메쉬 모델 생성)

  • Jang, Yeonggul;Kim, Dong Hwan;Jeon, Byunghwan;Han, Dongjin;Shim, Hackjoon;Chang, Hyuk-jae
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.419-429
    • /
    • 2016
  • Generating a 3D surface model from coronary artery segmentation helps to not only improve the rendering efficiency but also the diagnostic accuracy by providing physiological informations such as fractional flow reserve using computational fluid dynamics (CFD). This paper proposes a method to generate a triangular surface mesh using vessel structure information acquired with coronary artery segmentation. The marching cube algorithm is a typical method for generating a triangular surface mesh from a segmentation result as bit mask. But it is difficult for methods based on marching cube algorithm to express the lumen of thin, small and winding vessels because the algorithm only works in a three-dimensional (3D) discrete space. The proposed method generates a more accurate triangular surface mesh for each singular vessel using vessel centerlines, normal vectors and lumen diameters estimated during the process of coronary artery segmentation as the input. Then, the meshes that are overlapped due to branching are processed by mesh merging and merged into a coronary mesh.

Surface Reconstruction from Cross-Sectional Images using the Shrink-Wrapping Algorithm (Shrink-Wrapping 알고리즘을 이용한 단층영상으로부터의 표면 재구성)

  • Park, Eun-Jin;Choi, Young-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.1
    • /
    • pp.28-37
    • /
    • 2007
  • This paper addresses a new surface reconstruction scheme for approximating the isosurface from a set of tomographic cross sectional images. Differently from the novel Marching cube algorithm, our method does not extract iso-density surface(isosurface) directly from the voxels but calculates the iso-density point(isopoint) first. After building the relatively coarse initial mesh by the Cell-boundary algorithm approximating the isosurface, it produces the final isosurface by iteratively shrinking and smoothing the initial mesh. Comparing with the Marching Cube algorithm, our method is robust and does not make any crack in resulting surface model. Furthermore, the proposed method surmounts the O(1)-adjacency limitation of MC in defining the isopoints by permitting the O(2) and O(3)-adjacent isopoints in surface reconstruction, and can produce more accurate isosurface. According to experiments, it is proved to be very robust and efficient for isosurface reconstruction from cross sectional images.

Automatic 3D model generation from 2D X-ray images

  • Le Minh Tuan;Kim Hae-Kwang
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.361-364
    • /
    • 2004
  • This paper describes an automatic 3D models generation algorithm based on 2D silhouette images, using X-ray camera without camera parameters. The algorithm takes a multi steps process approach. First, a series of 2D silhouette images is captured from different directions of object and then converted to binary images. An octree data structure is constructed for voxel-based representation of object. An estimate 3D volume of object can be reconstructed by intersecting voxels and the 2D silhouettes. The marching cube algorithm is applied to get triangle mesh representing of the obtained 3D model for rendering.

  • PDF

Wavelet-Based Level-of-Detail Representation of 3D Objects (웨이브릿 기반의 3차원 물체 LOD 표현)

  • Lee, Ha-Sup;Yang, Hyun-Seung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.4
    • /
    • pp.185-191
    • /
    • 2002
  • In this paper, we propose a 3D object LOD(Level of Detail) modeling system that constructs a mesh from range images and generates the mesh of various LOD using the wavelet transform. In the initial mesh generation, we use the marching cube algorithm. We modify the original algorithm to apply it to construct the mesh from multiple range images efficiently. To get the base mesh we use the decimation algorithm which simplifies a mesh with preserving the topology Finally, when reconstructing new mesh which is similar to initial mesh we calculate the wavelet coefficients by using the wavelet transform. We solve the critical problem of wavelet-based methods - the surface crease problem (1) - by using the mesh simplification as the base mesh generation method.

Mask Modeling of a 3D Non-planar Parent Material for Micro-abrasive Jet Machining (미세입자 분사가공을 위한 3 차원 임의형상 모재용 마스크 모델링)

  • Kim, Ho-Chan;Lee, In-Hwan;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.91-97
    • /
    • 2010
  • Micro-abrasive Jet Machining is one of the new technology which enables micro-scale machining on the surface of high brittle materials. In this technology it is very important to fabricate a mask that prevents excessive abrasives not to machine un-intend surface. Our previous work introduced the micro-stereolithography technology for the mask fabrication. And is good to not only planar material but also for non-planar materials. But the technology requires a 3 dimensional mask CAD model which is perfectly matched with the surface topology of parent material as an input. Therefore there is strong need to develop an automated modeling technology which produce adequate 3D mask CAD model in fast and simple way. This paper introduces a fast and simple mask modeling algorithm which represents geometry of models in voxel. Input of the modeling system is 2D pattern image, 3D CAD model of parent material and machining parameters for Micro-abrasive Jet Machining. And the output is CAD model of 3D mask which reflects machining parameters and geometry of the parent material. Finally the suggested algorithm is implemented as software and verified by some test cases.

TAH(Total Artificial Heart) Virtual Surgery Using Multi-Volume Visualizing Technique (다중 체적 가시 기법을 이용한 완전인공심장의 가상 수술)

  • Lee, D.H.;Kim, J.H.;Kim, N.K.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.587-589
    • /
    • 1997
  • The virtual surgical trial of TAH is very important in some points as follows. The chests of patients who is under heart-disease are various types of undefine form. It is hard to say that there exist the standard shape of TAH and the position to surgern. So, the virtual surgery system is very important in realizing TAH surgery of human. We have implemented virtual surgery system of TAH that supporting multi volume fitting trial. We have acquired CT images of patients with DICOM format. Each organ of patients was segmented in 2-dimensional CT images. 3-dimensional objects were made with marching cube algorithm and save as file in VRML format. Virtual fitting trial was performed on Cosmo-World; a VRML editor. The collision points of TAH with other organs were well observed. And the best position and angles were determined and saved or each case. We believed that this virtual surgery will be helpful in TAH surgery and TAH customizing.

  • PDF

Volume Data Modeling by Using Wavelets Transformation and Tetrahedrization (웨이브렛 변환과 사면체 분할을 이용한 볼륨 데이터 모델링)

  • Gwun, Ou-Bong;Lee, Kun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.4
    • /
    • pp.1081-1089
    • /
    • 1999
  • Volume data modeling is concerned with finding a mathematical function which represents the relationship implied by the 3D data. Modeling a volume data geometrically can visualize a volume data using surface graphics without voxelization. It has many merits in that it is fast and requires little memory. We proposes, a method based on wavelet transformation and tetrahedrization. we implement a prototype system based on the proposed method. Last, we evaluated the proposed method comparing it with marching cube algorithm. the evaluation results show that though the proposed method uses only 13% of the volume data, the images generated is as good as the images generated by the marching cubes algorithm.

  • PDF