• Title/Summary/Keyword: Mapping of liquefaction

Search Result 11, Processing Time 0.02 seconds

Analysis of Liquefaction in Son-do Reclaimed land (송도매립지역의 액상화분석)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Oh, Young-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1446-1453
    • /
    • 2008
  • This paper presents the mapping of liquefaction for the Incheon Song-do reclamation area using both the liquefaction potential index(LPI) and the equivalent liquefaction factor of safety(FE). As a result, the mapping of liquefaction based on LPI and FE shows similar distribution pattern. Therefore, the mapping of liquefaction presented in this study will be a convenient index for use when the mapping of liquefaction for the Incheon Song-do reclamation area is drawn up. It will make selection of area that needs specific estimation and areas with adaptation of liquefaction counteraction construction methods for the future reclaimed land with the economical soil investigation.

  • PDF

Mapping of Liquefaction Potential in Songdo Reclamied Land (송도매립지역의 액상화 구역도 작성)

  • Kim, Sung-Hwan
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.296-304
    • /
    • 2018
  • Purpose: This study was carried out to evaluate the liquefaction potential of the land reclamation area in Incheon by using the ProShake program for long frequency Hachinohe seismic wave and short frequency Ofunato seismic waves to interpret ground response. Method: The interpretation results and the Modified Seed and Idriss method were used to evaluate the liquefaction potential. The liquefaction potential index which proposed by Iwasaki was calculated to be used as a guide line to represent the liquefaction evaluation results at the given location. The equivalent liquefaction factor of safety presented by Kang(1999) was used as a quantitative index to draw up the mapping of liquefaction potential. Results: This paper presents the mapping of liquefaction potential for the Incheon seaside reclamation area using both the liquefaction potential index and the equivalent liquefaction factor of safety. Conclution: As a result, the mapping of liquefaction based on the liquefaction potential index and equivalent liquefaction factor of safety shows similar distribution pattern.

A Study on Mapping of Liquefaction Hazard at a Megalopolis in Korea (국내 광역 단위 지역의 액상화 재해도 작성을 위한 연구)

  • Choi, Jae-Soon;Ku, Tai-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1246-1249
    • /
    • 2009
  • Liquefaction hazard caused by earthquake is the damage in a wide range. Until now, liquefaction hazard potential at a small area or most structure in Korea was assessed by modified Seed & Idriss method. However, it has been known that this method is not proper for metropolitan area due to a lot of time and data to perform the related ground response analyses such as Shake program. For these reasons, the current method has been used facilities or structures, not metropolitan area. In this study, several contents in seismic design of Eurocode and Korean seismic design standard for Port and Harbor were introduced and applied for assessing the liquefaction potential and mapping the liquefaction hazard by LPI(Liquefaction Potential Index). Finally, Ulsan metropolitan city was practically drawn in two dimensional space.

  • PDF

Study on Mapping Methodof Liquefaction hazard Potential in Korea (국내의 액상화 구역도 작성 기법에 관한 연구)

  • 강규진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.141-150
    • /
    • 2000
  • In this study liquefaction hazard potential was assessed by modified Seed and Idriss method and maps of liquefaction hazard potential utilized by LPI(Liquefaction Potential Index) and FE(Equivalent Liquefaction Factor of Safety) were constructed in two dimensional space, Comparisons of liquefaction hazard maps assessed by LPI and FE are represented to verify the FE method proposed in this study. Based on the results of comparing liquefaction hazard map using LPI and FE there is similar distribution trend of zonation indices. from the result of comparison of liquefaction hazard maps of FE base using Hachinohe and ofunato PGA(Peak ground Acceleration) data at one site of port and harbor in Korea the values of FE in liquefaction hazard map using Hachinohe data are underestimated. And in the view of quantitative analysis FE is more convenient than LPI because types of results from FE are factor of safety that widely used in geotechnical practice and aseismic design standard for port and harbor in Korea.

  • PDF

Study on Mapping of Liquefaction Hazared Potential at Port and harbor in Korea (국내 연안지역의 액상화 구역도 작성에 관한 연구)

  • 강규진;박인준;박인준;김수일
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2000
  • 본 연구에서는 항만 및 어항시설의 내진설?준서에서 채택하고 있는 수정 Seed와 Idriss 방법을 이용하여 액상화 평가를 수행하고 액상화 가능지수(liquefaction potential index, LPI)와 등가 액상화 안전율(FE)을 이용하여 액상화 가능성에 대한 구역도를 작성하였다. 이 두결과가 유사한 것으로 나타나 등가 액상화 안전율의 적합성을 확인하였다 국내 연안의 두지역에 대하여 Hachinohe 지진기록과 Ofunato 지진기록을 이용한 액상화 가능성 구역도를 FE를 이용하여 작성한 후 비교한 결과 Hachinohe 지진기록에 의한 액상화 가능성 구역도가 더 과소평가되는 경향을 보이는 것으로 나타났다 또한 FE는 안전율의 형태로 표현되었기 때문에 구역도 작성과 해석에 편의 성을 제공하였다.

  • PDF

Development of Mapping Method for Liquefaction Hazard in Moderate Seismic Region Considering the Uncertainty of Big Site Investigation Data (빅데이터 지반정보의 불확실성을 고려한 중진지역에서의 액상화 위험도 작성기법 개발)

  • Kwak, Minjung;Ku, Taijin;Choi, Jaesoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.17-27
    • /
    • 2015
  • Recently, Korean government has tried out to set up earthquake hazards prevention system. In the system, several geotechnical hazard maps including liquefaction hazard map and landslide hazard map for the whole country have drawn to consider the domestic seismic characteristics. To draw the macro liquefaction hazard map, big data of site investigations in metropolitan areas and provincial areas has to be verified for its application. In this research, we carried out site response analyses using 522 borehole site investigation data in S city during a desirable earthquake. The soil classification was separately compared to shear wave velocity considering the uncertainty of site investigation data. Probability distribution and statistical analysis for the results of site response analyses was applied to the feasibility study. Finally, we suggest a new site amplification coefficient, hereby presented with the similar results of liquefaction hazard mapping using the calculated liquefaction potential index by the site response analyses. Above-mentioned study will be expected to help to follow research and draw liquefaction hazard map in moderate seismic region.

Correlations of Earthquake Accelerations and LPIs for Liquefaction Risk Mapping in Seoul & Gyeonggi-do Area based on Artificial Scenarios (서울, 경기지역의 시나리오별 액상화 위험지도 작성을 위한 지진가속도와 LPI 상관관계 분석)

  • Baek, Woohyun;Choi, Jaesoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.5-12
    • /
    • 2019
  • On November 15, 2017, a unpredictable liquefaction damage was occurred at the $M_L=5.4$ Pohang earthquake and after, many researches have been conducted in Korea. In Korea, where there were no cases of earthquake damage, it has been extremely neglectable in preparing earthquake risk maps and building earthquake systems that corresponded to prevention and preparation. Since it is almost impossible to observe signs and symptoms of drought, floods, and typhoons in advance, it is very effective to predict the impacts and magnitudes of seismic events. In this study, 14,040 borehole data were collected in the metropolitan area and liquefaction evaluation was performed using the amplification factor. Based on this data, liquefaction hazard maps were prepared for ground accelerations of 0.06 g, 0.14 g, 0.22 g, and 0.30 g, including 200years return period to 4,800years return period. Also, the correlation analysis between the earthquake acceleration and LPI was carried out to draw a real-time predictable liquefaction hazard map. As a result, 707 correlation equations in every cells in GIS map were proposed. Finally, the simulation for liquefaction risk mapping against artificial earthquake was performed in the metropolitan area using the proposed correlation equations.

Assessment of maximum liquefaction distance using soft computing approaches

  • Kishan Kumar;Pijush Samui;Shiva S. Choudhary
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.395-418
    • /
    • 2024
  • The epicentral region of earthquakes is typically where liquefaction-related damage takes place. To determine the maximum distance, such as maximum epicentral distance (Re), maximum fault distance (Rf), or maximum hypocentral distance (Rh), at which an earthquake can inflict damage, given its magnitude, this study, using a recently updated global liquefaction database, multiple ML models are built to predict the limiting distances (Re, Rf, or Rh) required for an earthquake of a given magnitude to cause damage. Four machine learning models LSTM (Long Short-Term Memory), BiLSTM (Bidirectional Long Short-Term Memory), CNN (Convolutional Neural Network), and XGB (Extreme Gradient Boosting) are developed using the Python programming language. All four proposed ML models performed better than empirical models for limiting distance assessment. Among these models, the XGB model outperformed all the models. In order to determine how well the suggested models can predict limiting distances, a number of statistical parameters have been studied. To compare the accuracy of the proposed models, rank analysis, error matrix, and Taylor diagram have been developed. The ML models proposed in this paper are more robust than other current models and may be used to assess the minimal energy of a liquefaction disaster caused by an earthquake or to estimate the maximum distance of a liquefied site provided an earthquake in rapid disaster mapping.

A study on the improvements of geotechnical properties of in-situ soils by grouting

  • Chang, Muhsiung;Mao, Tze-wen;Huang, Ren-chung
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.527-546
    • /
    • 2016
  • This paper discusses improvements of compressibility, permeability, static and liquefaction strengths of in-situ soils by grouting. Both field testing and laboratory evaluation of the on-site samples were conducted. The improvement of soils was influenced by two main factors, i.e., the grout materials and the injection mechanisms introduced by the field grouting. On-site grout mapping revealed the major mechanism was fracturing accompanied with some permeation at deeper zones of sandy soils, where long-gel time suspension grout and solution grout were applied. The study found the compressibility and swelling potential of CL soils at a 0.5 m distance to grout hole could be reduced by 25% and 50%, respectively, due to the grouting. The effect on hydraulic conductivity of the CL soils appeared insignificant. The grouting slightly improved the cohesion of the CL soils by 10~15 kPa, and the friction angle appeared unaffected. The grouting had also improved the cohesion of the on-site SM soils by 10~90 kPa, while influences on the friction angle of soils were uncertain. Liquefaction resistances could be enhanced for the sandy soils within a 2~3 m extent to the grout hole. Average improvements of 40% and 20% on the liquefaction resistance were achievable for the sandy soils for earthquake magnitudes of 6 and ${\geq}7.5$, respectively, by the grouting.

Visible Assessment of Earthquake-induced Geotechnical Hazards by Adopting Integrated Geospatial Database in Coastal Facility Areas (복합 공간데이터베이스 적용을 통한 해안 시설영역 지진 유발 지반재해의 가시적 평가)

  • Kim, Han-Saem;Sun, Chang-Guk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.171-180
    • /
    • 2016
  • Earthquake event keeps increasing every year, and the recent cases of earthquake hazards invoke the necessity of seismic study in Korea, as geotechnical earthquake hazards, such as strong ground motion, liquefaction and landslides, are a significant threat to structures in industrial hub areas including coastal facilities. In this study, systemized framework of integrated assessment of earthquake-induced geotechnical hazard was established using advanced geospatial database. And a visible simulation of the framework was specifically conducted at two coastal facility areas in Incheon. First, the geospatial-grid information in the 3D domain were constructed with geostatistical interpolation method composed of multiple geospatial coverage mapping and 3D integration of geo-layer construction considering spatial outliers and geotechnical uncertainty. Second, the behavior of site-specific seismic responses were assessed by incorporating the depth to bedrock, mean shear wave velocity of the upper 30 m, and characteristic site period based on the geospatial-grid. Third, the normalized correlations between rock-outcrop accelerations and the maximum accelerations of each grid were determined considering the site-specific seismic response characteristics. Fourth, the potential damage due to liquefaction was estimated by combining the geospatial-grid and accelerations correlation grid based on the simplified liquefaction potential index evaluation method.