• Title/Summary/Keyword: Mapping Measurement Distance

Search Result 46, Processing Time 0.028 seconds

Applicability Analysis of Measurement Data Classification and Spatial Interpolation to Improve IUGIM Accuracy (지하공간통합지도의 정확도 향상을 위한 계측 데이터 분류 및 공간 보간 기법 적용성 분석)

  • Lee, Sang-Yun;Song, Ki-Il;Kang, Kyung-Nam;Kim, Wooram;An, Joon-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.17-29
    • /
    • 2022
  • Recently, the interest in integrated underground geospatial information mapping (IUGIM) to ensure the safety of underground spaces and facilities has been increasing. Because IUGIM is used in the fields of underground space development and underground safety management, the up-to-dateness and accuracy of information are critical. In this study, IUGIM and field data were classified, and the accuracy of IUGIM was improved by spatial interpolation. A spatial interpolation technique was used to process borehole data in IUGIM, and a quantitative evaluation was performed with mean absolute error and root mean square error through the cross-validation of seven interpolation results according to the technique and model. From the cross-validation results, accuracy decreased in the order of nonuniform rational B-spline, Kriging, and inverse distance weighting. In the case of Kriging, the accuracy difference according to the variogram model was insignificant, and Kriging using the spherical variogram exhibited the best accuracy.

Spatial Analysis of Cyberspace and Mapping Cyberspace (사이버스페이스의 공간적 분석과 지도화)

  • 이희연
    • Journal of the Korean Geographical Society
    • /
    • v.37 no.3
    • /
    • pp.203-221
    • /
    • 2002
  • This study attempts to analyze the spatial characteristics of cyberspace and to map spatial variations of cyberspace. In order to analyze the spatial distribution of cyberspace, three measurement indices are selected such as commercial domain number, Internet backbone network, and Internet users, which are highly correlated to each other. The three sets of measurement showed that cyberspace in Korea is spreading in a highly uneven fashion, strongly favoring a few cities and unfavoring economically distressed cities. Seoul acts on overwhelmingly dominant role in cyberspace, by being concentrated a number of domains and having high-capacity bandwidth on Internet backbone network. Internet is selectively connecting several cities into highly interactive networks, while at the same time largely bypassing other cities. The development of Internet network through infrastructure investments at selected cities has resulted in an uneven accessibility and digital divide among cities. The regional disparity would be further reinforced by ICT development as the primary vehicle for unequal accessibility. The result of this study revealed that geography continues to matter, despite the recent rhetoric claiming of 'the death of distance'or 'the end of geography'.

3D Track Models Generation and Applications Based on LiDAR Data for Railway Route Management (철도노선관리에서의 LIDAR 데이터 기반의 3차원 궤적 모델 생성 및 적용)

  • Yeon, Sang-Ho;Lee, Young-Dae
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1099-1104
    • /
    • 2007
  • The visual implementation of 3-dimensional national environment is focused by the requirement and importance in the fields such as, national development plan, telecommunication facility deployment plan, railway construction, construction engineering, spatial city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies national geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. There it is needed to apply laser measurement technique in the spatial target object to obtain accuracy. Currently, the LiDAR data which combines the laser measurement skill and GPS has been introduced to obtain high resolution accuracy in the altitude measurement. In this paper, we first investigate the LiDAR based researches in advanced foreign countries, then we propose data a generation scheme and an algorithm for the optimal manage and synthesis of railway facility system in our 3-D spatial terrain information. For this object, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional railway model with long distance for 3D tract model generation.

  • PDF

Track Models Generation Based on Spatial Image Contents for Railway Route Management (철도노선관리에서의 공간 영상콘텐츠 기반의 궤적 모델 생성)

  • Yeon, Sang-Ho;Lee, Young-Wook
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.30-36
    • /
    • 2008
  • The Spatial Image contents of Geomorphology 3-D environment is focused by the requirement and importance in the fields such as, national land development plan, telecommunication facility management, railway construction, general construction engineering, Ubiquitous city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. There it is needed to apply laser measurement technique in the spatial target object to obtain accuracy. Currently, the LiDAR data which combines the laser measurement skill and GPS has been introduced to obtain high resolution accuracy in the altitude measurement. In this paper, we tested of the railway facilities using laser surveying system, then we propose data a generation of spatial images for the optimal manage and synthesis of railway facility system in our 3-D spatial terrain information. For this object, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional railway model with long distance for 3D tract model generation. As the results, We confirmed the solutions of varieties application for railway facilities management using 3-D spatial image contents.

  • PDF

Image-based Water Level Measurement Method Adapting to Ruler's Surface Condition (목자판 표면 상태에 적응적인 영상 기반 수위 계측 기법)

  • Kim, Jae-Do;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.67-76
    • /
    • 2010
  • This paper proposes a image-based water level measurement method, which adapt to the ruler's surface condition. When the surface of a ruler is deteriorated by mud, drifts, or strong light reflection, the proposed method judges the pollution of ruler by comparing distance between two levels: the first one is the end position of horizontal edge region which keeps the pattern of ruler's marking, and the second one is the position where the sharpest drop occurs in the histogram which is construct using image density based on the axis of image height. If the ruler is polluted, the water level is a position of local valley of the section having a maximum difference between the local peak and valley around the second level. If the ruler is not polluted, the water level is detected as the position having horizontal edges more than 30% of histogram's maximum value around the first level. The detected water level is converted to the actual water level by using the mapping table which is construct based on the making of ruler in the image. The proposed method is compared to the ultrasonic based method to evaluate its accuracy and efficiency on the real situation.

3D Spatial Image City Models Generation and Applications for Ubiquitous-City (u-city를 위한 3차원 공간 영상 도시 모델 생성 및 적용 방안)

  • Yeon, Sang-Ho;Lee, Young-Dae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.47-52
    • /
    • 2008
  • The visual implementation of 3-dimensional national environment is focused by the requirement and importance in the fields such as, urban planing, telecommunication facility deployment plan, railway construction, construction engineering, spatial city development, safety and disaster prevention engineering. The currently used DEM system based on the 2-D digital maps and contour lines has limitation in implementation in reproducing the 3-D spatial city. Currently, the LiDAR data which combines the laser and GPS skill has been introduced to obtain high resolution accuracy in the altitude measurement in the advanced country. In this paper, we first introduce the LiDAR based researches in advanced foreign countries, then we propose the data generation scheme and an solution algorithm for the optimal management of our 3-D spatial u-City construction. For this purpose, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional model with long distance for 3D u-city model generation.

  • PDF

Fundamental Experiment for the Development of Water Pipeline Locator (상수도관로 위치탐사 장비개발을 위한 기초실험)

  • Park, Sang-Bong;Kim, Jin-Won;Oh, Kyeong-Seok;Kim, Min-Cheol;Koo, Ja-yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.253-261
    • /
    • 2016
  • A variety of methods for detecting the location of an underground water pipeline are being used across the world; the current main methods used in South Korea, however, have the problems of low precision and efficiency and the limitations in actual application. On this, this study developed locator capable of detecting the location of a water pipe by the use of an IMU sensor, and technology for using the extended karman filter to correct error in location detection and to plot the location on the coordinate system. This study carried out a tract test and a road test as basic experiments to measure the performance of the developed technology and equipment. As a result of the straight line, circular and ellipse track tests, the 1750 IMU sensor showed the average error of 0.08-0.11%; and thus it was found that the developed locator can detect a location precisely. As a result of the 859.6-m road test, it was found that the error was 0.31 m in case the moving rate of the sensor was 0.3-0.6 m/s; and thus it was judged that the equipment developed by this study can be applied to long-distance water pipes of over 1 km sufficiently. It is planned to evaluate its field applicability in the future through an actual pipe network pilot test, and it is expected that locator capable of detecting the location of a water pipe more precisely will be developed through research for the enhancement of accuracy in the algorithm of location detection.

Development of Climate Data Management System Based on Satellite Imagery for Asia-Pacific Regions (아시아-태평양 지역 대상 위성영상 기반 기후 자료 관리 시스템 개발)

  • Park, Jihoon;Park, Kyungwon;Jung, Imgook;Cho, Wonil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.23-23
    • /
    • 2019
  • 본 연구의 목적은 아시아-태평양 지역을 대상으로 위성영상 기반 고해상도의 신뢰성이 있고 쉽게 접근할 수 있는 강수 자료를 제공하는 데 있다. 본 연구에서 개발한 기후 관리 시스템은 총 3가지의 위성자료(원시위성자료, 편의보정한 위성자료, 공간상세화한 위성자료)를 제공한다. 위성자료의 공간해상도는 $0.1^{\circ}$, $0.05^{\circ}$이며, 시간해상도는 1 day이다. 비교적 신뢰성이 높은 기후 자료가 구축된 한반도를 대상으로 위성영상 편의보정, 공간상세화 기법을 검증하고, 개발한 기법을 아시아-태평양에 위치한 바누아투에 적용하여 기후 자료를 생산하였다. 원시위성자료는 TRMM (Tropical Rainfall Measurement Mission) 위성과 GPM (Global Precipitation Mission) 위성을 사용하여 구축하였다. 편의보정은 GRA-IDW (Geographical Ratio Analysis-Inverse Distance Weighted), GRA-Kriging, QM (Quantile Mapping) 기법을 검토하여 본 연구에 적합한 알고리즘을 개발하고 이 중 최적의 결과를 보여주는 GRA-IDW 기법을 최종적으로 선정하였다. 공간상세화는 PRISM (Parameter-elevation Regressions on Independent Slopes Model)을 선정하여 수행하였다. 원시위성자료를 검증한 결과를 살펴보면 상관계수는 1998년부터 2017년까지 0.775로 비교적 정확도가 높게 나왔다. bias 값은 원시위성자료 값이 지상관측자료보다 과대추정하는 것으로 나타났다. 최종적인 편의보정 기법으로 GRA-IDW 기법을 선정하여 편의보정한 위성자료를 생산하였다. 공간상세화한 위성자료를 검증한 결과를 앞서 분석한 원시위성자료, 편의보정한 위성자료와 비교하면, 공간상세화를 수행하기 전보다 상관계수는 다소 작아지고, RMSE는 커지는 것으로 나타나나 그 차이가 크지 않아 공간상세화한 위성자료를 응용분야에 직접 사용할 수 있을 것으로 분석된다. 본 연구를 통해 개발된 기법을 활용하면 아시아-태평양에 신뢰성 있는 기후 관측 자료를 제공할 수 있다. 향후 본 연구에서 선정한 대상지역 이외에 기상관측소의 수가 희박하고 불균등하게 분포하고 있는 아시아-태평양 지역에 본 과업에서 개발한 시스템을 적용하여 신뢰성 있는 기후 자료를 제공할 수 있을 것으로 사료된다.

  • PDF

A Study on Reliability Prediction of System with Degrading Performance Parameter (열화되는 성능 파라메터를 가지는 시스템의 신뢰성 예측에 관한 연구)

  • Kim, Yon Soo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.142-148
    • /
    • 2015
  • Due to advancements in technology and manufacturing capability, it is not uncommon that life tests yield no or few failures at low stress levels. In these situations it is difficult to analyse lifetime data and make meaningful inferences about product or system reliability. For some products or systems whose performance characteristics degrade over time, a failure is said to have occurred when a performance characteristic crosses a critical threshold. The measurements of the degradation characteristic contain much useful and credible information about product or system reliability. Degradation measurements of the performance characteristics of an unfailed unit at different times can directly relate reliability measures to physical characteristics. Reliability prediction based on physical performance measures can be an efficient and alternative method to estimate for some highly reliable parts or systems. If the degradation process and the distance between the last measurement and a specified threshold can be established, the remaining useful life is predicted in advance. In turn, this prediction leads to just in time maintenance decision to protect systems. In this paper, we describe techniques for mapping product or system which has degrading performance parameter to the associated classical reliability measures in the performance domain. This paper described a general modeling and analysis procedure for reliability prediction based on one dominant degradation performance characteristic considering pseudo degradation performance life trend model. This pseudo degradation trend model is based on probability modeling of a failure mechanism degradation trend and comparison of a projected distribution to pre-defined critical soft failure point in time or cycle.

Corrosion visualization under organic coating using laser ultrasonic propagation imaging

  • Shi, Anseob;Park, Jinhwan;Lee, Heesoo;Choi, Yunshil;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.301-309
    • /
    • 2022
  • Protective coatings are most widely used anticorrosive structures for steel structures. The corrosion under the coating damages the host material, but this damage is completely hidden. Therefore, a field-applicable under-coating-corrosion visualization method has been desired for a long time. Laser ultrasonic technology has been studied in various fields as an in situ nondestructive inspection method. In this study, a comparative analysis was carried out between a guided-wave ultrasonic propagation imager (UPI) and pulse-echo UPI, which have the potential to be used in the field of under-coating-corrosion management. Both guided-wave UPI and pulse-echo UPI were able to successfully visualize the corrosion. Regarding the field application, the guided-wave UPI performing Q-switch laser scanning and piezoelectric sensing by magnetic attachment exhibited advantages owing to the larger distance and incident angle in the laser measurement than those of the pulse-echo UPI. Regarding the corrosion visualization methods, the combination of adjacent wave subtraction and variable time window amplitude mapping (VTWAM) provided acceptable results for the guided-wave UPI, while VTWAM was sufficient for the pule-echo UPI. In addition, the capability of multiple sensing in a single channel of the guided-wave UPI could improve the field applicability as well as the relatively smaller size of the system. Thus, we propose a guided-wave UPI as a tool for under-coating-corrosion management.