• Title/Summary/Keyword: Maple leaves peak date

Search Result 2, Processing Time 0.011 seconds

Statistical Analyses of the Flowering Dates of Cherry Blossom and the Peak Dates of Maple Leaves in South Korea Using ASOS and MODIS Data

  • Kim, Geunah;Kang, Jonggu;Youn, Youjeong;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.57-72
    • /
    • 2022
  • In this paper, we aimed to examine the flowering dates of cherry blossom and the peak dates of maple leaves in South Korea, by the combination of temperature observation data from ASOS (Automated Surface Observing System) and NDVI (Normalized Difference Vegetation Index) from MODIS (Moderate Resolution Imaging Spectroradiometer). The more recent years, the faster the flowering dates and the slower the peak dates. This is because of the impacts of climate change with the increase of air temperature in South Korea. By reflecting the climate change, our statistical models could reasonably predict the plant phenology with the CC (Correlation Coefficient) of 0.870 and the MAE (Mean Absolute Error) of 3.3 days for the flowering dates of cherry blossom, and the CC of 0.805 and the MAE of 3.8 for the peak dates of maple leaves. We could suppose a linear relationship between the plant phenology DOY (day of year) and the environmental factors like temperature and NDVI, which should be inspected in more detail. We found that the flowering date of cherry blossom was closely related to the monthly mean temperature of February and March, and the peak date of maple leaves was much associated with the accumulated temperature. Amore sophisticated future work will be required to examine the plant phenology using higher-resolution satellite images and additional meteorological variables like the diurnal temperature range sensitive to plant phenology. Using meteorological grid can help produce the spatially continuous raster maps for plant phenology.

Modeling of Vegetation Phenology Using MODIS and ASOS Data (MODIS와 ASOS 자료를 이용한 식물계절 모델링)

  • Kim, Geunah;Youn, Youjeong;Kang, Jonggu;Choi, Soyeon;Park, Ganghyun;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.627-646
    • /
    • 2022
  • Recently, the seriousness of climate change-related problems caused by global warming is growing, and the average temperature is also rising. As a result, it is affecting the environment in which various temperature-sensitive creatures and creatures live, and changes in the ecosystem are also being detected. Seasons are one of the important factors influencing the types, distribution, and growth characteristics of creatures living in the area. Among the most popular and easily recognized plant seasonal phenomena among the indicators of the climate change impact evaluation, the blooming day of flower and the peak day of autumn leaves were modeled. The types of plants used in the modeling were forsythia and cherry trees, which can be seen as representative plants of spring, and maple and ginkgo, which can be seen as representative plants of autumn. Weather data used to perform modeling were temperature, precipitation, and solar radiation observed through the ASOS Observatory of the Korea Meteorological Administration. As satellite data, MODIS NDVI was used for modeling, and it has a correlation coefficient of about -0.2 for the flowering date and 0.3 for the autumn leaves peak date. As the model used, the model was established using multiple regression models, which are linear models, and Random Forest, which are nonlinear models. In addition, the predicted values estimated by each model were expressed as isopleth maps using spatial interpolation techniques to express the trend of plant seasonal changes from 2003 to 2020. It is believed that using NDVI with high spatio-temporal resolution in the future will increase the accuracy of plant phenology modeling.