• Title/Summary/Keyword: Map-Based Control

Search Result 614, Processing Time 0.033 seconds

A Study on Development of Current Map Model Based on Electromagnetic Field Design (전자계 설계 기반 전류맵 모델 개발에 관한 연구)

  • Park, Gui-Yeol;Hwang, Yo-Han;Choi, Jong-Sil;Lee, Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.454-461
    • /
    • 2021
  • To control the torque of the IPMSM, a lookup table is generally used in control system because of its nonlinear characteristics. However, the method of generating the lookup table data has the disadvantage of having difficulty accurately analyzing the changing parameters, generating the current or magnetic flux map is complicated and long test time taken due to motor temperature differences at each test points. In this paper, on the basis of the electromagnetic field design of IPMSM, we devised an electromagnetic field-based magnetic flux map model that can compensate for the pre-generated magnetic flux map through a quick and simple test.

Efficient Computation and Control of Geometric Shape Morphing based on Direction Map (방향지도 기반 기하모핑의 효율적인 계산 및 제어 방법)

  • Lee, J.H.;Kim, H.;Kim, H.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.4
    • /
    • pp.243-253
    • /
    • 2003
  • This paper presents a new geometric morphing algorithm for polygons based on a simple geometric structure called direction map, which is mainly composed of a circular list of direction vectors defined by two neighboring vertices of a polygon. To generate a sequence of intermediate morphing shapes, first we merge direction maps of given control shapes based on a certain ordering rule of direction vectors, and scale the length of each direction vectors using Bezier or blossom controls. We show that the proposed algorithm is an improvement of the previous methods based on Minkowski sum (or convolution) in th aspects of computational efficiency and geometric properties.

Grid Map Building based on Reliability Model of Sonar Data (초음파 데이터의 신뢰도 모델 기반 지도 작성)

  • Han, Hye-Min;Park, Joong-Tae;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1219-1226
    • /
    • 2011
  • This paper proposes a novel approach to building an occupancy grid map using sonar data. It is very important for a mobile robot to recognize and construct its surrounding environments for navigation. However, the grid map constructed by ultrasonic sensors cannot represent a realistic shape of given environments due to incorrect sonar measurements caused by specular reflection. To overcome this problem, we propose an advanced sonar sensor model which consists of distance and shape factors used to determine the reliability of sensor data. Through this sensor model, a robot can build a high-quality grid map. The proposed method was verified by various experiments and showed that the robot could build an accurate map with sonar data in various indoor environments.

Localization of Mobile Robot Using Active Omni-directional Ranging System (능동 전방향 거리 측정 시스템을 이용한 이동로봇의 위치 추정)

  • Ryu, Ji-Hyung;Kim, Jin-Won;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.483-488
    • /
    • 2008
  • An active omni-directional raging system using an omni-directional vision with structured light has many advantages compared to the conventional ranging systems: robustness against external illumination noise because of the laser structured light and computational efficiency because of one shot image containing $360^{\circ}$ environment information from the omni-directional vision. The omni-directional range data represents a local distance map at a certain position in the workspace. In this paper, we propose a matching algorithm for the local distance map with the given global map database, thereby to localize a mobile robot in the global workspace. Since the global map database consists of line segments representing edges of environment object in general, the matching algorithm is based on relative position and orientation of line segments in the local map and the global map. The effectiveness of the proposed omni-directional ranging system and the matching are verified through experiments.

Extraction and Matching of Elevation Moment of Inertia for Elevation Map-based Localization of an Outdoor Mobile Robot (실외 이동로봇의 고도지도 기반 위치인식을 위한 고도관성모멘트 추출 및 정합)

  • Kwon, Tae-Bum;Song, Jae-Bok;Kang, Sin-Cheon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.203-210
    • /
    • 2009
  • The problem of outdoor localization can be practically solved by GPS. However, GPS is not perfect and some areas of outdoor navigation should consider other solutions. This research deals with outdoor localization using an elevation map without GPS. This paper proposes a novel feature, elevation moment of inertia (EMOI), which represents the distribution of elevation as a function of distance from a robot in the elevation map. Each cell of an elevation map has its own EMOI, and outdoor localization can be performed by matching EMOIs obtained from the robot and the pre-given elevation map. The experiments and simulations show that the proposed EMOI can be usefully exploited for outdoor localization with an elevation map and this feature can be easily applied to other probabilistic approaches such as Markov localization method.

A Study on the Performane Requirement of Precise Digital Map for Road Lane Recognition (차로 구분이 가능한 정밀전자지도의 성능 요구사항에 관한 연구)

  • Kang, Woo-Yong;Lee, Eun-Sung;Lee, Geon-Woo;Park, Jae-Ik;Choi, Kwang-Sik;Heo, Moon-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • To enable the efficient operation of ITS, it is necessary to collect location data for vehicles on the road. In the case of futuristic transportation systems like ubiquitous transportation and smart highway, a method of data collection that is advanced enough to incorporate road lane recognition is required. To meet this requirement, technology based on radio frequency identification (RFID) has been researched. However, RFID may fail to yield accurate location information during high-speed driving because of the time required for communication between the tag and the reader. Moreover, installing tags across all roads necessarily incurs an enormous cost. One cost-saving alternative currently being researched is to utilize GNSS (global navigation satellite system) carrierbased location information where available. For lane recognition using GNSS, a precise digital map for determining vehicle position by lane is needed in addition to the carrier-based GNSS location data. A "precise digital map" is a map containing the location information of each road lane to enable lane recognition. At present, precise digital maps are being created for lane recognition experiments by measuring the lanes in the test area. However, such work is being carried out through comparison with vehicle driving information, without definitions being established for detailed performance specifications. Therefore, this study analyzes the performance requirements of a precise digital map capable of lane recognition based on the accuracy of GNSS location information and the accuracy of the precise digital map. To analyze the performance of the precise digital map, simulations are carried out. The results show that to have high performance of this system, we need under 0.5m accuracy of the precise digital map.

Fuzzy Based Mobile Robot Control with GUI Environment (GUI환경을 갖는 퍼지기반 이동로봇제어)

  • Hong, Seon-Hack
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.128-135
    • /
    • 2006
  • This paper proposes the control method of fuzzy based sensor fusion by using the self localization of environment, position data by dead reckoning of the encoder and world map from sonic sensors. The proposed fuzzy based sensor fusion system recognizes the object and extracts features such as edge, distance and patterns for generating the world map and self localization. Therefore, this paper has developed fuzzy based control of mobile robot with experimentations in a corridor environment.

Self-Organization of Visuo-Motor Map Considering an Obstacle

  • Maruki, Yuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1168-1171
    • /
    • 2003
  • The visuo-motor map is based on the Kohonen's self-organizing map. The map is learned the relation of the end effecter coordinates and the joint angles. In this paper, a 3 d-o-fmanipulator which moves in the 2D space is targeted. A CCD camera is set beside the manipulator, and the end effecter coordinates are given from the image of a manipulator. As a result of learning, the end effecter can be moved to the destination without exact teaching.

  • PDF

Graph-based Building of a Precise Map for Autonomous Vehicles Using Road Marking Information (도로 노면 정보를 이용한 그래프 기반 자율주행용 정밀지도 생성)

  • Cho, Sung-Joon;Im, Jun-Hyuck;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.12
    • /
    • pp.1053-1060
    • /
    • 2016
  • As location recognition for autonomous vehicles develops, the need for a precise map for autonomous driving has increased. A precise map must be built based upon accurate position. Recent studies have accelerated research in this area by using various sensors that calculate the accurate position by comparing and recognizing objects around the roads. However, application of such methods is limited because these studies only take objects with significant verticality into consideration. Thus, new research is needed to overcome the limitations: a method that is not constrained by the existence of certain types of surrounding objects shall be proposed. Most roads contain road marking information, such as lanes, direction signs, and pedestrian crossings. Such information on the road surface is a valuable resource for building a precise map. This paper proposes a method of building a precise map by using road marking information.

Confidence Measure of Depth Map for Outdoor RGB+D Database (야외 RGB+D 데이터베이스 구축을 위한 깊이 영상 신뢰도 측정 기법)

  • Park, Jaekwang;Kim, Sunok;Sohn, Kwanghoon;Min, Dongbo
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1647-1658
    • /
    • 2016
  • RGB+D database has been widely used in object recognition, object tracking, robot control, to name a few. While rapid advance of active depth sensing technologies allows for the widespread of indoor RGB+D databases, there are only few outdoor RGB+D databases largely due to an inherent limitation of active depth cameras. In this paper, we propose a novel method used to build outdoor RGB+D databases. Instead of using active depth cameras such as Kinect or LIDAR, we acquire a pair of stereo image using high-resolution stereo camera and then obtain a depth map by applying stereo matching algorithm. To deal with estimation errors that inevitably exist in the depth map obtained from stereo matching methods, we develop an approach that estimates confidence of depth maps based on unsupervised learning. Unlike existing confidence estimation approaches, we explicitly consider a spatial correlation that may exist in the confidence map. Specifically, we focus on refining confidence feature with the assumption that the confidence feature and resultant confidence map are smoothly-varying in spatial domain and are highly correlated to each other. Experimental result shows that the proposed method outperforms existing confidence measure based approaches in various benchmark dataset.