• Title/Summary/Keyword: Map of Gradient

Search Result 191, Processing Time 0.022 seconds

A study on the Effective Utilization of Temperature Logging Data for Calculating Geothermal Gradient (지온경사 산출을 위한 효율적인 온도검층자료 이용방법 연구)

  • 김형찬
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.503-517
    • /
    • 1999
  • The purpose of this study is to verfify a more effecive techique for calculating geothermal gradient. this study examines 370 data of temperature-logging having been collected since 1985. The daya are divided into three different grades grades according to the type of temperature-depth plots: 204 data show typical linear gradient (Grade A); 126 data do not explicitily show the gradient becase of various external effects such as water flow (Grade B); and the rest 40 data do not show the gradient at all (Grade D). The new technique for calculating geothermal gradient is to be required to use Greade-B data more effctiviely. This new technique includes (1) calculating the independer depth of atmospheric temperature in the earth; (2) drawing a distribution map of subsurface tempurature by using the distribution map of subsurface temperature by using Grade-A data at the independent depth; and (3) recalculating geothermal gradient of Grade-B data by using the distrbution map of subsurface temperature, borehole depth, and bottom temperature of Grade-B data by using the distribution map of subsurface temperature, borehole depth, and bottom temperature of Grade-B data. As a result, 330 data-both Grade-A and Grade-B data--can be used to draw a distribution map of hot spradient. The map clearly distinguishes anomaly areas, and helps interpret their relations to the distribution of hot springs, geology, geological structures, and geophysical anomaly areas. These new results reveal that the average of geothermal in south Korea is 25.6$^{\circ}C$/km, when calculated to the Kriging method.

  • PDF

Comparison of Ionospheric Spatial Gradient Estimation Methods using GNSS (GNSS를 이용한 전리층 기울기 추정 방법 비교)

  • Jeong, Myeong-Sook;Kim, Jeong-Rae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.2
    • /
    • pp.18-24
    • /
    • 2007
  • The high ionospheric spatial gradient during ionospheric storm is the most concern when applying GNSS(Global Navigation Satellite System) augmentation systems for aircraft precision approach. Since the ionospheric gradient level depends on geographical location as well as the storm, understanding the ionospheric gradient statistics over a specific regional area is necessary for operating the augmentation systems. This paper compares three ionosphere gradient computation methods, direct differentiation between two receivers' ionospheric delay signal for a common satellite, derivation from a grid ionosphere map, and derivation from a plate ionosphere map. The plate map method provides a good indication on the gradient variation behavior over a regional area with limited number of GNSS receivers. The residual analysis for the ionosphere storm detection is discussed as well.

  • PDF

Automatic Face Tracking based on Active Contour Model using Two-Level Composite Gradient Map (두 단계 합성 기울기 맵을 이용한 활성 외곽선 모델 기반 자동 얼굴 추적)

  • Kim, Soo-Kyung;Jang, Yo-Jin;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.901-911
    • /
    • 2009
  • In this paper, we propose a construction technique of two-level composite gradient map to automatically track a face with large movement in successive frames. Our method is composed of three main steps. First, the gradient maps with two-level resolution are generated for fast convergence of active contour. Second, to recognize the variations of face between successive frames and remove the neighbor background, weighted composite gradient map is generated by combining the composite gradient map and difference mask of previous and current frames. Third, to prevent active contour from converging local minima, the energy slope is generated by using closing operation. In addition, the fast closing operation is proposed to accelerate the processing time of closing operation. For performance evaluation, we compare our method with previous active contour model-based face tracking methods using a visual inspection, robustness test and processing time. Experimental results show that our method can effectively track the face with large movement and robustly converge to the optimal position even in frames with complicated background.

Learning algorithms for big data logistic regression on RHIPE platform (RHIPE 플랫폼에서 빅데이터 로지스틱 회귀를 위한 학습 알고리즘)

  • Jung, Byung Ho;Lim, Dong Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.911-923
    • /
    • 2016
  • Machine learning becomes increasingly important in the big data era. Logistic regression is a type of classification in machine leaning, and has been widely used in various fields, including medicine, economics, marketing, and social sciences. Rhipe that integrates R and Hadoop environment, has not been discussed by many researchers owing to the difficulty of its installation and MapReduce implementation. In this paper, we present the MapReduce implementation of Gradient Descent algorithm and Newton-Raphson algorithm for logistic regression using Rhipe. The Newton-Raphson algorithm does not require a learning rate, while Gradient Descent algorithm needs to manually pick a learning rate. We choose the learning rate by performing the mixed procedure of grid search and binary search for processing big data efficiently. In the performance study, our Newton-Raphson algorithm outpeforms Gradient Descent algorithm in all the tested data.

Generating Motion- and Distortion-Free Local Field Map Using 3D Ultrashort TE MRI: Comparison with T2* Mapping

  • Jeong, Kyle;Thapa, Bijaya;Han, Bong-Soo;Kim, Daehong;Jeong, Eun-Kee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.4
    • /
    • pp.328-340
    • /
    • 2019
  • Purpose: To generate phase images with free of motion-induced artifact and susceptibility-induced distortion using 3D radial ultrashort TE (UTE) MRI. Materials and Methods: The field map was theoretically derived by solving Laplace's equation with appropriate boundary conditions, and used to simulate the image distortion in conventional spin-warp MRI. Manufacturer's 3D radial imaging sequence was modified to acquire maximum number of radial spokes in a given time, by removing the spoiler gradient and sampling during both rampup and rampdown gradient. Spoke direction randomly jumps so that a readout gradient acts as a spoiling gradient for the previous spoke. The custom raw data was reconstructed using a homemade image reconstruction software, which is programmed using Python language. The method was applied to a phantom and in-vivo human brain and abdomen. The performance of UTE was compared with 3D GRE for phase mapping. Local phase mapping was compared with T2* mapping using UTE. Results: The phase map using UTE mimics true field-map, which was theoretically calculated, while that using 3D GRE revealed both motion-induced artifact and geometric distortion. Motion-free imaging is particularly crucial for application of phase mapping for abdomen MRI, which typically requires multiple breathold acquisitions. The air pockets, which are caught within the digestive pathway, induce spatially varying and large background field. T2* map, that was calculated using UTE data, suffers from non-uniform T2* value due to this background field, while does not appear in the local phase map of UTE data. Conclusion: Phase map generated using UTE mimicked the true field map even when non-zero susceptibility objects were present. Phase map generated by 3D GRE did not accurately mimic the true field map when non-zero susceptibility objects were present due to the significant field distortion as theoretically calculated. Nonetheless, UTE allows for phase maps to be free of susceptibility-induced distortion without the use of any post-processing protocols.

Analyses of Computation Time on Snakes and Gradient Vector Flow

  • Kwak, Young-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.439-445
    • /
    • 2007
  • GVF can solve two difficulties with Snakes that are on setting initial contour and have a hard time processing into boundary concavities. But GVF takes much longer computation time than the existing Snakes because of their edge map and partial derivatives. Therefore this paper analyzed the computation time between GVF and Snakes. As a simulation result, both algorithms took almost similar computation time in simple image. In real images, GVF took about two times computation than Snakes.

  • PDF

The first of its kind metallicity map of the Large Magellanic Cloud

  • Choudhury, Samyaday;Subramaniam, Annapurni;Cole, Andrew A.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.30.1-30.1
    • /
    • 2016
  • We have estimated a metallicity map of the Large Magellanic Cloud (LMC) using the Magellanic Cloud Photometric Survey (MCPS) and Optical Gravitational Lensing Experiment (OGLE III) photometric data. This is a first of its kind, high-spatial resolution map of metallicity up to a radius of $4^{\circ}-5^{\circ}$, derived using large area photometric data and calibrated using spectroscopic data of Red Giant Branch (RGB) stars. The RGB is identified in the V, (V - I) colour- magnitude diagrams of small subregions of varying sizes in both data sets. The slope of the RGB is used as an indicator of the mean metallicity of a subregion, and it is calibrated to metallicity using spectroscopic data for field and cluster red giants in selected subregions. The mean metallicity of the LMC is found to be [Fe/H] = -0.37 dex (${\sigma}[Fe/H]=0.12$) from MCPS data, and [Fe/H] = -0.39 dex (${\sigma}[Fe/H]=0.10$) from OGLE III data. The bar is found to have an uniform and higher metallicity compared to the disk, and is indicative of an active bar in the past. Both the data sets suggest a shallow radial metallicity gradient up to a radius of 4 kpc ($-0.049{\pm}0.002$ dex kpc-1 to $-0.066{\pm}0.006$ dex kpc-1). This metallicity gradient of the LMC disk, though shallow, resembles the gradient seen in spiral galaxies, and similar to that found in our Galaxy.

  • PDF

Palmprint Verification Using Multi-scale Gradient Orientation Maps

  • Kim, Min-Ki
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • This paper proposes a new approach to palmprint verification based on the gradient, in which a palm image is considered to be a three-dimensional terrain. Principal lines and wrinkles make deep and shallow valleys on a palm landscape. Then the steepest slope direction in each local area is first computed using the Kirsch operator, after which an orientation map is created that represents the dominant slope direction of each pixel. In this study, three orientation maps were made with different scales to represent local and global gradient information. Next, feature matching based on pixel-unit comparison was performed. The experimental results showed that the proposed method is superior to several state-of-the-art methods. In addition, the verification could be greatly improved by fusing orientation maps with different scales.

Bottle Label Segmentation Based on Multiple Gradient Information

  • Chen, Yanjuan;Park, Sang-Cheol;Na, In-Seop;Kim, Soo-Hyung;Lee, Myung-Eun
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.24-29
    • /
    • 2011
  • In this paper, we propose a method to segment the bottle label in images taken by mobile phones using multi-gradient approaches. In order to segment the label region of interest-object, the saliency map method and Hough Transformation method are first applied to the original images to obtain the candidate region. The saliency map is used to detect the most salient area based on three kinds of features (color, orientation and illumination features). The Hough Transformation is a technique to isolated features of a particular shape within an image. Therefore, we utilize it to find the left and right border of the bottle. Next, we segment the label based on the gradient information obtained from the structure tensor method and edge method. The experimental results have shown that the proposed method is able to accurately segment the labels as the first step of product label recognition system.

Bio-inspired robot swarm control algorithm for dynamic environment monitoring

  • Kim, Kyukwang;Kim, Hyeongkeun;Myung, Hyun
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • To monitor the environment and determine the source of a pollutant gradient using a multiple robot swarm, we propose a hybrid algorithm that combines two bio-inspired algorithms mimicking chemotaxis and pheromones of bacteria. The algorithm is implemented in virtual robot agents in a simulator to evaluate their feasibility and efficiency in gradient maps with different sizes. Simulation results show that the chemotaxis controller guided robot agents to the locations with higher pollutant concentrations, while the pheromone marked in a virtual field increased the efficiency of the search by reducing the visiting redundancy. The number of steps required to reach the target point did not increase proportionally as the map size increased, but were less than those in the linear whole-map search method. Furthermore, the robot agents could function with simple sensor composition, minimum information about the map, and low calculation capacity.