In North Korea, there has been the considerable loss of human lives every yew due to the deficiency of foods. Thus, in order to reduce such damages, a research project should be launched to provide various information for cooperation with North Korean government, and to develop proper agricultural management system. Furthermore, based on the water resources information map generated by KOWACO (Korea Water Resources Corporation) and the environmental information system developed by MOE (Ministry of Environment), an agricultural information infrastructure of North Korea and a management system need to be effectively performed. Therefore, this research is mainly to develop the Agricultural Information Management System of North Korea (NKAIMS), which can collect, manage and analyze agricultural information and water resources utilization status of North Korea, and further support to make relevant decisions and establish the agricultural land-use plans. This research has three phases. The major outcome of the first phase is collecting the agricultural and water resources utilization data such as soils, rivers, streams, collective farms, etc., designing and building database, and developing integrated management system considering the users' requirements. The main work of the second phase is improving and reinforcing database such as adding the information of dams, land-over data, bridges, tunnels, satellite images, etc., inspecting and renewing such as importing detail attribute information of reservoirs, and improving system for more conveniently using. The third phase will be to supplement more useful functions such as statistic analysis, continually inspecting and improving database, and developing web-based system. The product of this research supports collecting and analyzing relevant data to facilitate easier agricultural activities and support effective decision making for food production in the preparation of unification. Moreover, through designing database considering sharing information and system expendability, it can support systematic data usability of agricultural information and save cost for data management.
Journal of Korea Spatial Information System Society
/
v.1
no.2
s.2
/
pp.115-125
/
1999
Much efforts are being process at many ways for digitization cadastral maps that will be the base map of Parceled Based Land Information Systems. But, current digitizing systems need too much time and cost digitizing about 720,000 cadastral maps. That's way we develop new digitization system for cadastral maps by using scanning and vectorizing methods. In this paper, we treat scanner test and vectorizing program that are the most important parts of new digitization system for cadastral maps. we analyze needs of Korean Cadastral Survey Corporation, and discuss algorithms and functions of developed programs. Using newly developed scanner test program, user could test various scanners, and use inexpensive scanner if it satisfy the accuracy needed. And vectorizing program will reduce much time and cost, because it is designed and customized practically to he adequate to cadastral maps and to improve work speed, accuracy and usage.
A reactor inlet header break experiment, B9401, performed in the RD-14M multi channel test facility was analyzed using RELAP5/MOD3.2 and RELAP5/CANDU[1]. The RELAP5 has been developed for the use in the analysis of the transient behavior of the pressurized water reactor. A recent study showed that the RELAP5 could be feasible even for the simulation of the thermal hydraulic behavior of CANDU reactors. However, some deficiencies in the prediction of fuel sheath temperature and transient behavior in athe headers were identified in the RELAP5 assessments. The RELAP5/CANDU has been developing to resolve the deficiencies in the RELAP5 and to improve the predictability of the thermal-hydraulic behaviors of the CANDU reactors. In the RELAP5/CANDU, critical heat flux model, horizontal flow regime map, heat transfer model in horizontal channel, etc. were modified or added to the RELAP5/MOD3.2. This study aims to identify the applicability of both codes, in particular, in the multi-channel simulation of the CANDU reactors. The RELAP5/MOD3.2 and the RELAP5/CANDU analyses demonstrate the code's capability to predict reasonably the major phenomena occurred during the transient. The thermal-hydraulic behaviors of both codes are almost identical, however, the RELAP5/CANDU predicts better the heater sheath temperature than the RELAP5/MOD3.2. Pressure differences between headers govern the flow characteristics through the heated sections, particularly after the ECI. In determining header pressure, there are many uncertainties arisen from the complicated effects including steady state pressure distribution. Therefore, it would be concluded that further works are required to reduce these uncertainties, and consequently predict appropriately thermal-hydraulic behaviors in the reactor coolant system during LOCA analyses.
Kim, Seong-Hoon;Roh, Myung-Il;Kim, Ki-Su;Oh, Min-Jae
Journal of Advanced Research in Ocean Engineering
/
v.3
no.1
/
pp.32-40
/
2017
Recently, the amount of data to be processed and the complexity thereof have been increasing due to the development of information and communication technology, and industry's interest in such big data is increasing day by day. In the shipbuilding and offshore industry also, there is growing interest in the effective utilization of data, since various and vast amounts of data are being generated in the process of design, production, and operation. In order to effectively utilize big data in the shipbuilding and offshore industry, it is necessary to store and process large amounts of data. In this study, it was considered efficient to apply Hadoop and R, which are mostly used in big data related research. Hadoop is a framework for storing and processing big data. It provides the Hadoop Distributed File System (HDFS) for storing big data, and the MapReduce function for processing. Meanwhile, R provides various data analysis techniques through the language and environment for statistical calculation and graphics. While Hadoop makes it is easy to handle big data, it is difficult to finely process data; and although R has advanced analysis capability, it is difficult to use to process large data. This study proposes a big data platform based on Hadoop for applications in the shipbuilding and offshore industry. The proposed platform includes the existing data of the shipyard, and makes it possible to manage and process the data. To check the applicability of the platform, it is applied to estimate the weights of offshore structure topsides. In this study, we store data of existing FPSOs in Hadoop-based Hortonworks Data Platform (HDP), and perform regression analysis using RHadoop. We evaluate the effectiveness of large data processing by RHadoop by comparing the results of regression analysis and the processing time, with the results of using the conventional weight estimation program.
Park, Goon-Dong;Seo, Bum-June;Yang, In-Hyung;Jeong, Jae-Eun;Oh, Jae-Eung;Lee, Jung-Youn
Transactions of the Korean Society of Automotive Engineers
/
v.20
no.3
/
pp.119-125
/
2012
Caliper intergrated Electric Parking Brake (EPB) is an automatic parking brake system, attached to rear caliper. Because EPB uses luxury vehicles recently, the drivers of vehicles are sensitive to the EPB noise. EPB is operated by the motor and gear, so noise is generated by motor and gear. In order to reduce noise, One of EPB manufacturers uses helical gear and changes the shape of EPB housing. But these methods are not optimized for reduction of interior noise. There are many noise transfer paths into vehicle interior and it is difficult to identify the noise sources. Therefore, in this study, we performed contribution analysis and modal testing in the vehicle system. It is possible to distinguish between air-borne noise and structure-borne noise in the vehicle interior noise by comparing interior noise peak with resonance mode map.
Mass-customization is fast growing a segment of the apparel market. 2D Virtual wearing system is one of visual support tools that make possible to sell apparel before producing and reduce the time and costs related to product development and manufacturing in the world of apparel mass-customization. This paper is related to fabric color mapping method for 2D image-based virtual wearing system. In proposed method, clothing shape section of interest is segmented from a clothes model image using a region growing method, and then mapping a new fabric color selected by user into it based on its intensity difference map is processed. With the proposed method in 2D virtual wearing system, regardless of color or intensity of model clothes, it is possible to virtually change the fabric color with holding the illumination and shading properties of the selected clothing shape section, and also to quickly and easily simulate, compare, and select multiple fabric color combinations for individual styles or entire outfits.
In this paper, we propose an automatic segmentation method of renal parenchyma on abdominal CT image using graph-cuts with shape constraint based on multi-probabilistic atlas. The proposed method consists of following three steps. First, to use the various shape information of renal parenchyma, multi-probabilistic atlas is generated by cortex-based similarity registration. Second, initial seeds for graph-cuts are extracted by maximum a posteriori (MAP) estimation and renal parenchyma is segmented by graph-cuts with shape constraint. Third, to reduce alignment error of probabilistic atlas and increase segmentation accuracy, registration and segmentation are iteratively performed. To evaluate the performance of proposed method, qualitative and quantitative evaluation are performed. Experimental results show that the proposed method avoids a leakage into neighbor regions with similar intensity of renal parenchyma and shows improved segmentation accuracy.
Kim, Young-Geun;Kim, Seung-Hyun;Jo, Min-Hui;Kim, Won-Jung
The Journal of the Korea institute of electronic communication sciences
/
v.9
no.7
/
pp.791-797
/
2014
In order to create an environment for Apache Hadoop for parallel distributed processing system of Bigdata, by connecting a plurality of computers, or to configure the node, using the configuration of the virtual nodes on a single computer it is necessary to build a cloud fading environment. However, be constructed in practice for education in these systems, there are many constraints in terms of cost and complex system configuration. Therefore, it is possible to be used as training for educational institutions and beginners in the field of Bigdata processing, development of learning systems and inexpensive practical is urgent. Based on the Raspberry Pi board, training and analysis of Big data processing, such as Hadoop and NoSQL is now the design and implementation of a learning system of parallel distributed processing of possible Bigdata in this study. It is expected that Bigdata parallel distributed processing system that has been implemented, and be a useful system for beginners who want to start a Bigdata and education.
As we enter a new era of Big Data, the amount of semantic data has rapidly increased. In order to derive meaningful information from this large semantic data, studies that utilize the SWRL(Semantic Web Rule Language) are being actively conducted. SWRL rules are based on data extracted from a user's empirical knowledge. However, conventional reasoning systems developed on single machines cannot process large scale data. Similarly, multi-node based reasoning systems have performance degradation problems due to network shuffling. Therefore, this paper overcomes the limitations of existing systems and proposes more efficient distributed inference methods. It also introduces data partitioning strategies to minimize network shuffling. In addition, it describes a method for optimizing the incremental reasoning process through data selection and determining the rule order. In order to evaluate the proposed methods, the experiments were conducted using WiseKB consisting of 200 million triples with 83 user defined rules and the overall reasoning task was completed in 32.7 minutes. Also, the experiment results using LUBM bench datasets showed that our approach could perform reasoning twice as fast as MapReduce based reasoning systems.
Journal of Information Technology and Architecture
/
v.11
no.4
/
pp.449-462
/
2014
In big data era, there are a number of considerable parts in processing systems for capturing, storing, and analyzing stored or streaming data. Unlike traditional data handling systems, a big data processing system needs to concern the characteristics (format, velocity, and volume) of being handled data in the system. In this situation, virtualized computing platform is an emerging platform for handling big data effectively, since virtualization technology enables to manage computing resources dynamically and elastically with minimum efforts. In this paper, we analyze resource utilization of virtualized computing resources to discover suitable deployment models in Apache Hadoop and HBase-based big data processing environment. Consequently, Task Tracker service shows high CPU utilization and high Disk I/O overhead during MapReduce phases. Moreover, HRegion service indicates high network resource consumption for transfer the traffic data from DataNode to Task Tracker. DataNode shows high memory resource utilization and Disk I/O overhead for reading stored data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.