• Title/Summary/Keyword: Map Layers

Search Result 226, Processing Time 0.023 seconds

Spatial interpolation of geotechnical data: A case study for Multan City, Pakistan

  • Aziz, Mubashir;Khan, Tanveer A.;Ahmed, Tauqir
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.475-488
    • /
    • 2017
  • Geotechnical data contributes substantially to the cost of engineering projects due to increasing cost of site investigations. Existing information in the form of soil maps can save considerable time and expenses while deciding the scope and extent of site exploration for a proposed project site. This paper presents spatial interpolation of data obtained from soil investigation reports of different construction sites and development of soil maps for geotechnical characterization of Multan area using ArcGIS. The subsurface conditions of the study area have been examined in terms of soil type and standard penetration resistance. The Inverse Distance Weighting method in the Spatial Analyst extension of ArcMap10 has been employed to develop zonation maps at different depths of the study area. Each depth level has been interpolated as a surface to create zonation maps for soil type and standard penetration resistance. Correlations have been presented based on linear regression of standard penetration resistance values with depth for quick estimation of strength and stiffness of soil during preliminary planning and design stage of a proposed project in the study area. Such information helps engineers to use data derived from nearby sites or sites of similar subsoils subjected to similar geological process to build a preliminary ground model for a new site. Moreover, reliable information on geometry and engineering properties of underground layers would make projects safer and economical.

A method based on Multi-Convolution layers Joint and Generative Adversarial Networks for Vehicle Detection

  • Han, Guang;Su, Jinpeng;Zhang, Chengwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1795-1811
    • /
    • 2019
  • In order to achieve rapid and accurate detection of vehicle objects in complex traffic conditions, we propose a novel vehicle detection method. Firstly, more contextual and small-object vehicle information can be obtained by our Joint Feature Network (JFN). Secondly, our Evolved Region Proposal Network (EPRN) generates initial anchor boxes by adding an improved version of the region proposal network in this network, and at the same time filters out a large number of false vehicle boxes by soft-Non Maximum Suppression (NMS). Then, our Mask Network (MaskN) generates an example that includes the vehicle occlusion, the generator and discriminator can learn from each other in order to further improve the vehicle object detection capability. Finally, these candidate vehicle detection boxes are optimized to obtain the final vehicle detection boxes by the Fine-Tuning Network(FTN). Through the evaluation experiment on the DETRAC benchmark dataset, we find that in terms of mAP, our method exceeds Faster-RCNN by 11.15%, YOLO by 11.88%, and EB by 1.64%. Besides, our algorithm also has achieved top2 comaring with MS-CNN, YOLO-v3, RefineNet, RetinaNet, Faster-rcnn, DSSD and YOLO-v2 of vehicle category in KITTI dataset.

Verification of Graphite Isotope Ratio Method Combined With Polynomial Regression for the Estimation of Cumulative Plutonium Production in a Graphite-Moderated Reactor

  • Kim, Kyeongwon;Han, Jinseok;Lee, Hyun Chul;Jang, Junkyung;Lee, Deokjung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.447-457
    • /
    • 2021
  • Graphite Isotope Ratio Method (GIRM) can be used to estimate plutonium production in a graphite-moderated reactor. This study presents verification results for the GIRM combined with a 3-D polynomial regression function to estimate cumulative plutonium production in a graphite-moderated reactor. Using the 3-D Monte-Carlo method, verification was done by comparing the cumulative plutonium production with the GIRM. The GIRM can estimate plutonium production for specific sampling points using a function that is based on an isotope ratio of impurity elements. In this study, the 10B/11B isotope ratio was chosen and calculated for sampling points. Then, 3-D polynomial regression was used to derive a function that represents a whole core cumulative plutonium production map. To verify the accuracy of the GIRM with polynomial regression, the reference value of plutonium production was calculated using a Monte-Carlo code, MCS, up to 4250 days of depletion. Moreover, the amount of plutonium produced in certain axial layers and fuel pins at 1250, 2250, and 3250 days of depletion was obtained and used for additional verification. As a result, the difference in the total cumulative plutonium production based on the MCS and GIRM results was found below 3.1% with regard to the root mean square (RMS) error.

A study on the changes of urban organization and social meaning in the western Area of Gyeongbokgung Palace - Focused on Nuha-dong and Pilun-dong after the modern era - (경복궁 서측 지역의 도시조직 변화와 사회적 의미 고찰 - 근대기 이후 누하동, 필운동의 주요 사례 필지를 중심으로 -)

  • Bae, Chang-Hyun
    • Journal of architectural history
    • /
    • v.31 no.3
    • /
    • pp.31-40
    • /
    • 2022
  • In the historical city center where overall development has not been made, it is not difficult to observe the asp ect of the urban change process over time accumulated. Seochon(西村), which collectively refers to 13 legal dong s in the west of Gyeongbokgung Palace, is also considered a representative historical village with high value as a historical and cultural cityscape because of historical context remains throughout the lot. Therefore, research ex amining the process of changing parcels in this area is useful for a more three-dimensional understanding of the presence of several layers of time. In this study, relationship between the opening time of each road, the river co ver process, and the current building establishment process is examined using maps after the pre-modern period and modern era. In addition, to examine the specific change process of individual lots using the old land register, building management ledger and cadastral map.

A data fusion method for bridge displacement reconstruction based on LSTM networks

  • Duan, Da-You;Wang, Zuo-Cai;Sun, Xiao-Tong;Xin, Yu
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.599-616
    • /
    • 2022
  • Bridge displacement contains vital information for bridge condition and performance. Due to the limits of direct displacement measurement methods, the indirect displacement reconstruction methods based on the strain or acceleration data are also developed in engineering applications. There are still some deficiencies of the displacement reconstruction methods based on strain or acceleration in practice. This paper proposed a novel method based on long short-term memory (LSTM) networks to reconstruct the bridge dynamic displacements with the strain and acceleration data source. The LSTM networks with three hidden layers are utilized to map the relationships between the measured responses and the bridge displacement. To achieve the data fusion, the input strain and acceleration data need to be preprocessed by normalization and then the corresponding dynamic displacement responses can be reconstructed by the LSTM networks. In the numerical simulation, the errors of the displacement reconstruction are below 9% for different load cases, and the proposed method is robust when the input strain and acceleration data contains additive noise. The hyper-parameter effect is analyzed and the displacement reconstruction accuracies of different machine learning methods are compared. For experimental verification, the errors are below 6% for the simply supported beam and continuous beam cases. Both the numerical and experimental results indicate that the proposed data fusion method can accurately reconstruct the displacement.

Hybrid GA-ANN and PSO-ANN methods for accurate prediction of uniaxial compression capacity of CFDST columns

  • Quang-Viet Vu;Sawekchai Tangaramvong;Thu Huynh Van;George Papazafeiropoulos
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.759-779
    • /
    • 2023
  • The paper proposes two hybrid metaheuristic optimization and artificial neural network (ANN) methods for the close prediction of the ultimate axial compressive capacity of concentrically loaded concrete filled double skin steel tube (CFDST) columns. Two metaheuristic optimization, namely genetic algorithm (GA) and particle swarm optimization (PSO), approaches enable the dynamic training architecture underlying an ANN model by optimizing the number and sizes of hidden layers as well as the weights and biases of the neurons, simultaneously. The former is termed as GA-ANN, and the latter as PSO-ANN. These techniques utilize the gradient-based optimization with Bayesian regularization that enhances the optimization process. The proposed GA-ANN and PSO-ANN methods construct the predictive ANNs from 125 available experimental datasets and present the superior performance over standard ANNs. Both the hybrid GA-ANN and PSO-ANN methods are encoded within a user-friendly graphical interface that can reliably map out the accurate ultimate axial compressive capacity of CFDST columns with various geometry and material parameters.

Assessing landslide susceptibility along the Halong - Vandon expressway in Quang Ninh province, Vietnam: A comprehensive approach integrating GIS and various methods

  • Nguyen-Vu Luat;Tuan-Nghia Do;Lan Chau Nguyen;Nguyen Trung Kien
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.135-147
    • /
    • 2024
  • A GIS-based landslide susceptibility mapping (LSM) was carried out using frequency ratio (FR), modified frequency ratio (M-FR), analytic hierarchy process (AHP), and modified analytic hierarchy process (M-AHP) methods to identify and delineate the potential failure zones along the Halong - Vandon expressway. The thematic layers of various landslide causative factors were generated for modeling in GIS, including geology, rainfall, distance to fault, distance to road, slope, aspect, landuse, density of landslide, vertical relief, and horizontal relief. In addition, a landslide inventory along the road network was prepared using data provided by the management department during the course of construction and operation from 2017 to 2019, when many landslides were documented. The validation results showed that the M-FR method had the highest AUC value (AUC = 0.971), which was followed by the FR method with AUC = 0.961. The AUC values were 0.939 and 0.892 for the M-AHP and AHP methods, respectively. The generated LSM obtained from M-FR method classified the study area into five susceptibility classes: very low (0), low (0-1), moderate (1-2), high (2-3), and very high (3-4) classes, which could be useful for various stakeholders like planners, engineers, designers, and local public for future construction and maintenance in the study area.

Assessment of Urban Land Suitability Analysis for Public Park Planning

  • Sungmin Cho
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.259-266
    • /
    • 2024
  • One of the most time consuming issues in a city development is the identification of suitable areas for urban infrastructures and proper land uses. Suitability analysis is the process and procedures to find the best available land in given area -that is, the ability of a system to select the needs of users in land use. This paper studied the usage of Geographic Information System technique and methods for the selection of the most appropriate sites for public park in the city of Gwangju. GIS was used as a standard technique to find the best available sites for development in urban areas. For this cause, digital elevation model and spatial data were used to produce different thematic layers by using software Idrisi. Criteria for finding the suitable site for park development were decided to evaluate the land and the followings 4 criteria were selected: on land with less than 3 degrees in slope, outside a 200m buffer around lakes, on land currently designated as forests, and 20ha or greater in size. To meet and measure each criterion, distance and context operators were applied to reclassify the importance of certain weight and Boolean images were generated to meet the criteria. These weights and maps has been combined using ArcGIS tools and the final map was prepared showing the most suitable sites. We may assist city planners and government officials in future development of public facilities including parks and related land use plans at urban level and act as to ensure proper land use planning and management of the urban areas.

A Comparative Study of Fuzzy Relationship and ANN for Landslide Susceptibility in Pohang Area (퍼지관계 기법과 인공신경망 기법을 이용한 포항지역의 산사태 취약성 예측 기법 비교 연구)

  • Kim, Jin Yeob;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.301-312
    • /
    • 2013
  • Landslides are caused by complex interaction among a large number of interrelated factors such as topography, geology, forest and soils. In this study, a comparative study was carried out using fuzzy relationship method and artificial neural network to evaluate landslide susceptibility. For landslide susceptibility mapping, maps of the landslide occurrence locations, slope angle, aspect, curvature, lithology, soil drainage, soil depth, soil texture, forest type, forest age, forest diameter and forest density were constructed from the spatial data sets. In fuzzy relation analysis, the membership values for each category of thematic layers have been determined using the cosine amplitude method. Then the integration of different thematic layers to produce landslide susceptibility map was performed by Cartesian product operation. In artificial neural network analysis, the relative weight values for causative factors were determined by back propagation algorithm. Landslide susceptibility maps prepared by two approaches were validated by ROC(Receiver Operating Characteristic) curve and AUC(Area Under the Curve). Based on the validation results, both approaches show excellent performance to predict the landslide susceptibility but the performance of the artificial neural network was superior in this study area.

Accuracy Assessment of Feature Collection Method with Unmanned Aerial Vehicle Images Using Stereo Plotting Program StereoCAD (수치도화 프로그램 StereoCAD를 이용한 무인 항공영상의 묘사 정확도 평가)

  • Lee, Jae One;Kim, Doo Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.257-264
    • /
    • 2020
  • Vectorization is currently the main method in feature collection (extraction) during digital mapping using UAV-Photogrammetry. However, this method is time consuming and prone to gross elevation errors when extracted from a DSM (Digital Surface Model), because three-dimensional feature coordinates are vectorized separately: plane information from an orthophoto and height from a DSM. Consequently, the demand for stereo plotting method capable of acquiring three- dimensional spatial information simultaneously is increasing. However, this method requires an expensive equipment, a Digital Photogrammetry Workstation (DPW), and the technology itself is still incomplete. In this paper, we evaluated the accuracy of low-cost stereo plotting system, Menci's StereoCAD, by analyzing its three-dimensional spatial information acquisition. Images were taken with a FC 6310 camera mounted on a Phantom4 pro at a 90 m altitude with a Ground Sample Distance (GSD) of 3 cm. The accuracy analysis was performed by comparing differences in coordinates between the results from the ground survey and the stereo plotting at check points, and also at the corner points by layers. The results showed that the Root Mean Square Error (RMSE) at check points was 0.048 m for horizontal and 0.078 m for vertical coordinates, respectively, and for different layers, it ranged from 0.104 m to 0.127 m for horizontal and 0.086 m to 0.092 m for vertical coordinates, respectively. In conclusion, the results showed 1: 1,000 digital topographic map can be generated using a stereo plotting system with UAV images.