• Title/Summary/Keyword: Manufacturing Process Variables

Search Result 447, Processing Time 0.03 seconds

Factors Affecting Intention to Introduce Smart Factory in SMEs - Including Government Assistance Expectancy and Task Technology Fit - (중소기업의 스마트팩토리 도입의도에 영향을 미치는 요인에 관한 연구 - 정부지원기대와 과업기술적합도를 포함하여)

  • Kim, Joung-rae
    • Journal of Venture Innovation
    • /
    • v.3 no.2
    • /
    • pp.41-76
    • /
    • 2020
  • This study confirmed factors affecting smart factory technology acceptance through empirical analysis. It is a study on what factors have an important influence on the introduction of the smart factory, which is the core field of the 4th industry. I believe that there is academic and practical significance in the context of insufficient research on technology acceptance in the field of smart factories. This research was conducted based on the Unified Theory of Acceptance and Use of Technology (UTAUT), whose explanatory power has been proven in the study of the acceptance factors of information technology. In addition to the four independent variables of the UTAUT : Performance Expectancy, Effort Expectancy, Social Influence, and Facilitating Conditions, Government Assistance Expectancy, which is expected to be an important factor due to the characteristics of the smart factory, was added to the independent variable. And, in order to confirm the technical factors of smart factory technology acceptance, the Task Technology Fit(TTF) was added to empirically analyze the effect on Behavioral Intention. Trust is added as a parameter because the degree of trust in new technologies is expected to have a very important effect on the acceptance of technologies. Finally, empirical verification was conducted by adding Innovation Resistance to a research variable that plays a role as a moderator, based on previous studies that innovation by new information technology can inevitably cause refusal to users. For empirical analysis, an online questionnaire of random sampling method was conducted for incumbents of domestic small and medium-sized enterprises, and 309 copies of effective responses were used for empirical analysis. Amos 23.0 and Process macro 3.4 were used for statistical analysis. For accurate statistical analysis, the validity of Research Model and Measurement Variable were secured through confirmatory factor analysis. Accurate empirical analysis was conducted through appropriate statistical procedures and correct interpretation for causality verification, mediating effect verification, and moderating effect verification. Performance Expectancy, Social Influence, Government Assistance Expectancy, and Task Technology Fit had a positive (+) effect on smart factory technology acceptance. The magnitude of influence was found in the order of Government Assistance Expectancy(β=.487) > Task Technology Fit(β=.218) > Performance Expectancy(β=.205) > Social Influence(β=.204). Both the Task Characteristics and the Technology Characteristics were confirmed to have a positive (+) effect on Task Technology Fit. It was found that Task Characteristics(β=.559) had a greater effect on Task Technology Fit than Technology Characteristics(β=.328). In the mediating effect verification on Trust, a statistically significant mediating role of Trust was not identified between each of the six independent variables and the intention to introduce a smart factory. Through the verification of the moderating effect of Innovation Resistance, it was found that Innovation Resistance plays a positive (+) moderating role between Government Assistance Expectancy, and technology acceptance intention. In other words, the greater the Innovation Resistance, the greater the influence of the Government Assistance Expectancy on the intention to adopt the smart factory than the case where there is less Innovation Resistance. Based on this, academic and practical implications were presented.

A Study on a Effect of Product Design and a Primary factor of Qualify Competitiveness (제품 디자인의 파급효과와 품질경쟁력의 결정요인에 관한 연구)

  • Lim, Chae-Suk;Yoon, Jong-Young
    • Archives of design research
    • /
    • v.18 no.4 s.62
    • /
    • pp.95-104
    • /
    • 2005
  • The purpose of this study is to estimate the determinants of product design and analyze the impacts of product design on quality competitiveness, product reliability, and consumer satisfaction in an attempt to provide a foundation for the theory of design management. For this empirical analysis, this study has derived the relevant measurement variables from a survey on 400 Korean manufacturing firms during the period of $August{\sim}October$ 2003. The empirical findings are summarized as follows: First, the determinants of product design are very significantly (at p<0.001) estimated to be the R&D capability, the level of R&D expenditure, the level of innovative activities(5S, TQM, 6Sigma, QC, etc.). This empirical result can support Pawar and Driva(1999)'s two principles by which the performance of product design and product development can be simultaneously evaluated in the context of CE(concurrent engineering) of NPD(newly product development) activities. Second, the hypothesis on the causality: product design${\rightarrow}$quality competitiveness${\rightarrow}$customer satisfaction${\rightarrow}$customer loyalty is very significantly (at p<0.001) accepted. This implies that product design positively affects consumer satisfaction, not directly but indirectly, by influencing quality competitiveness. This empirical result of this study can also support the studies of for example Flynn et al.(1994), Ahire et at.(1996), Afire and Dreyfus(2000) which conclude that design management is a significant determinant of product quality. The aforementioned empirical results are important in the following sense: the empirical result that quality competitiveness plays a bridging role between product design and consumer satisfaction can reconcile the traditional debate between QFD(quality function development) approach asserted by product developers and conjoint analysis maintained by marketers. The first empirical result is related to QFD approach whereas the second empirical result is related to conjoint analysis. At the same time, the empirical results of this study can support the rationale of design integration(DI) of Ettlie(1997), i.e., the coordination of the timing and substance of product development activities performed by the various disciplines and organizational functions of a product's life cycle. Finally, the policy implication (at the corporate level) from the empirical results is that successful design management(DM) requires not only the support of top management but also the removal of communication barriers, (i.e. the adoption of cross-functional teams) so that concurrent engineering(CE), the simultaneous development of product and process designs can assure product development speed, design quality, and market success.

  • PDF

Optimization for the Process of Osmotic Dehydration for the Manufacturing of Dried Kiwifruit (건조키위 제조를 위한 삼투건조공정의 최적화)

  • Hong, Joo-Hun;Youn, Kwang-Seob;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.348-355
    • /
    • 1998
  • The developments of various processed foods and the high quality dried fruits, in particular, are urgently needed for the enhancement of fruit consumption and their competitive values. Therefore, in this study, three variables by three level factorial design and response surface methodology were used to determine optimum conditions for osmotic dehydration of kiwifruit. The relationships of moisture losses, solid gains, weight reductions, sugar contents, titratable acidities and vitamin C contents depending on changes with temperature, sugar concentration and immersion time were investigated. The moisture loss, solid gain, weight reduction and reduction of moisture content after osmotic dehydration were increased as temperature, sugar concentration and immersion time increased. The effect of concentration was more significant than those of temperature and time on mass transfer. Sugar content was increased by increasing sugar concentration, temperature, immersion time during osmotic dehydration. Titratable acidity and vitamin C content were increased by decreasing temperature, immersion time and increasing concentration during osmotic dehydration. The regression models showed a significant lack of fit (P>0.05) and were highly significant with satisfying values of $R^2$. At the given conditions such as $66{\sim}69%$ moisture content, above $24^{\circ}Brix$ sugar content and more than 23 mg% vitamin C, the optimum condition for osmotic dehydration was $37^{\circ}C,\;55^{\circ}Brix$ and 1.5 hour.

  • PDF

The Exposure Status and Biomarkers of Bisphenol A in Shipyard Workers (일부 조선업 근로자들의 bisphenol A 노출실태와 생물학적 지표)

  • Kim, Cheong-Sik;Park, Jun-Ho;Cha, Bong-Suk;Park, Jong-Ku;Kim, Heon;Chang, Soung-Hoon;Koh, Sang-Baek
    • Journal of Preventive Medicine and Public Health
    • /
    • v.36 no.2
    • /
    • pp.93-100
    • /
    • 2003
  • Objectives : Because shipyard workers are involved with various manufacturing process, they are exposed to many kinds of hazardous materials. Welders especially, are exposed to bisphenol-A (BPA) during the welding and flame cutting of coated steel, This study was conducted to assess the exposure status of the endocrine disrupter based on the job-exposure matrix. The effects of the genetic polymorphism of xenobiotic enzyme metabolisms involved in the metabolism of BPA on the levels of urinary metabolite were investigated. Methods : The study population was recruited from a shipyard company in the f province. A total of 84 shipbuilding workers 47 and 37 in the exposed and control groups, respectively, were recruited for this study. The questionnaire variables included, age, sex, use of personal protective equipment, smoking, drinking and work duration. The urinary metabolite was collected in the afternoon and correction made for the urinary creatinine concentration. The of the CYP1A1, CYP2E1 and UGT1A6 genotypes were investigated using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods with the DNA extracted from venous blood. Results : The urinary BPA level in the welders group was significantly higher than in the control group (p<0.05). The urinary BPA concentration with the wild type UGT1A6 was higher than the other UGT1A6 genotypes, but with no statistical significant. From themultiple regression analysis of the urinary BPA, the regression coefficient for job grade was statistically significant (p<0.05). Conclusions : The grade of exposure to BPA affected the urinary BPA concentration was statistically significant. However, the genetic polymorphisms of xenobiotics enzyme metabolism were not statistically significant. Further investigation of the genetic polymorphisms with a larger sample size is needed.

The Characteristics and Performances of Manufacturing SMEs that Utilize Public Information Support Infrastructure (공공 정보지원 인프라 활용한 제조 중소기업의 특징과 성과에 관한 연구)

  • Kim, Keun-Hwan;Kwon, Taehoon;Jun, Seung-pyo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.1-33
    • /
    • 2019
  • The small and medium sized enterprises (hereinafter SMEs) are already at a competitive disadvantaged when compared to large companies with more abundant resources. Manufacturing SMEs not only need a lot of information needed for new product development for sustainable growth and survival, but also seek networking to overcome the limitations of resources, but they are faced with limitations due to their size limitations. In a new era in which connectivity increases the complexity and uncertainty of the business environment, SMEs are increasingly urged to find information and solve networking problems. In order to solve these problems, the government funded research institutes plays an important role and duty to solve the information asymmetry problem of SMEs. The purpose of this study is to identify the differentiating characteristics of SMEs that utilize the public information support infrastructure provided by SMEs to enhance the innovation capacity of SMEs, and how they contribute to corporate performance. We argue that we need an infrastructure for providing information support to SMEs as part of this effort to strengthen of the role of government funded institutions; in this study, we specifically identify the target of such a policy and furthermore empirically demonstrate the effects of such policy-based efforts. Our goal is to help establish the strategies for building the information supporting infrastructure. To achieve this purpose, we first classified the characteristics of SMEs that have been found to utilize the information supporting infrastructure provided by government funded institutions. This allows us to verify whether selection bias appears in the analyzed group, which helps us clarify the interpretative limits of our study results. Next, we performed mediator and moderator effect analysis for multiple variables to analyze the process through which the use of information supporting infrastructure led to an improvement in external networking capabilities and resulted in enhancing product competitiveness. This analysis helps identify the key factors we should focus on when offering indirect support to SMEs through the information supporting infrastructure, which in turn helps us more efficiently manage research related to SME supporting policies implemented by government funded institutions. The results of this study showed the following. First, SMEs that used the information supporting infrastructure were found to have a significant difference in size in comparison to domestic R&D SMEs, but on the other hand, there was no significant difference in the cluster analysis that considered various variables. Based on these findings, we confirmed that SMEs that use the information supporting infrastructure are superior in size, and had a relatively higher distribution of companies that transact to a greater degree with large companies, when compared to the SMEs composing the general group of SMEs. Also, we found that companies that already receive support from the information infrastructure have a high concentration of companies that need collaboration with government funded institution. Secondly, among the SMEs that use the information supporting infrastructure, we found that increasing external networking capabilities contributed to enhancing product competitiveness, and while this was no the effect of direct assistance, we also found that indirect contributions were made by increasing the open marketing capabilities: in other words, this was the result of an indirect-only mediator effect. Also, the number of times the company received additional support in this process through mentoring related to information utilization was found to have a mediated moderator effect on improving external networking capabilities and in turn strengthening product competitiveness. The results of this study provide several insights that will help establish policies. KISTI's information support infrastructure may lead to the conclusion that marketing is already well underway, but it intentionally supports groups that enable to achieve good performance. As a result, the government should provide clear priorities whether to support the companies in the underdevelopment or to aid better performance. Through our research, we have identified how public information infrastructure contributes to product competitiveness. Here, we can draw some policy implications. First, the public information support infrastructure should have the capability to enhance the ability to interact with or to find the expert that provides required information. Second, if the utilization of public information support (online) infrastructure is effective, it is not necessary to continuously provide informational mentoring, which is a parallel offline support. Rather, offline support such as mentoring should be used as an appropriate device for abnormal symptom monitoring. Third, it is required that SMEs should improve their ability to utilize, because the effect of enhancing networking capacity through public information support infrastructure and enhancing product competitiveness through such infrastructure appears in most types of companies rather than in specific SMEs.

Structural Adjustment of Domestic Firms in the Era of Market Liberalization (시장개방(市場開放)과 국내기업(國內企業)의 구조조정(構造調整))

  • Seong, So-mi
    • KDI Journal of Economic Policy
    • /
    • v.13 no.4
    • /
    • pp.91-116
    • /
    • 1991
  • Market liberalization progressing simultaneously with high and rapidly rising domestic wages has created an adverse business environment for domestic firms. Korean firms are losing their international competitiveness in comparison to firms from LDC(Less Developed Countries) in low-tech industries. In high-tech industries, domestic firms without government protection (which is impossible due to the liberalization policy and the current international status of the Korean economy) are in a disadvantaged position relative to firms from advanced countries. This paper examines the division of roles between the private sector and the government in order to achieve a successful structural adjustment, which has become the impending industrial policy issue caused by high domestic wages, on the one hand, and the opening of domestic markets, on the other. The micro foundation of the economy-wide structural adjustment is actually the restructuring of business portfolios at the firm level. The firm-level business restructuring means that firms in low-value-added businesses or with declining market niches establish new major businesses in higher value-added segments or growing market niches. The adjustment of the business structure at the firm level can only be accomplished by accumulating firm-specific managerial assets necessary to establish a new business structure. This can be done through learning-by-doing in the whole system of management, including research and development, manufacturing, and marketing. Therefore, the voluntary cooperation among the people in the company is essential for making the cost of the learning process lower than that at the competing companies. Hence, firms that attempt to restructure their major businesses need to induce corporate-wide participation through innovations in organization and management, encourage innovative corporate culture, and maintain cooperative labor unions. Policy discussions on structural adjustments usually regard firms as a black box behind a few macro variables. But in reality, firm activities are not flows of materials but relationships among human resources. The growth potential of companies are embodied in the human resources of the firm; the balance of interest among stockholders, managers, and workers of the company' brings the accumulation of the company's core competencies. Therefore, policymakers and economists shoud change their old concept of the firm as a technological black box which produces a marketable commodities. Firms should be regarded as coalitions of interest groups such as stockholders, managers, and workers. Consequently the discussion on the structural adjustment both at the macroeconomic level and the firm level should be based on this new paradigm of understanding firms. The government's role in reducing the cost of structural adjustment and supporting should the creation of new industries emphasize the following: First, government must promote the competition in domestic markets by revising laws related to antitrust policy, bankruptcy, and the promotion of small and medium-sized companies. General consensus on the limitations of government intervention and the merit of deregulation should be sought among policymakers and people in the business world. In the age of internationalization, nation-specific competitive advantages cannot be exclusively in favor of domestic firms. The international competitiveness of a domestic firm derives from the firm-specific core competencies which can be accumulated by internal investment and organization of the firm. Second, government must build up a solid infrastructure of production factors including capital, technology, manpower, and information. Structural adjustment often entails bankruptcies and partial waste of resources. However, it is desirable for the government not to try to sustain marginal businesses, but to support the diversification or restructuring of businesses by assisting in factor creation. Institutional support for venture businesses needs to be improved, especially in the financing system since many investment projects in venture businesses are highly risky, even though they are very promising. The proportion of low-value added production processes and declining industries should be reduced by promoting foreign direct investment and factory automation. Moreover, one cannot over-emphasize the importance of future-oriented labor policies to be based on the new paradigm of understanding firm activities. The old laws and instititutions related to labor unions need to be reformed. Third, government must improve the regimes related to money, banking, and the tax system to change business practices dependent on government protection or undesirable in view of the evolution of the Korean economy as a whole. To prevent rational business decisions from contradicting to the interest of the economy as a whole, government should influence the business environment, not the business itself.

  • PDF

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF