• Title/Summary/Keyword: Manufacturing Operation

Search Result 1,497, Processing Time 0.026 seconds

A Result of Field Survey for Ergonomic Work Risk Factors in General Hospital (의료업종의 작업위험요인에 대한 실태조사 결과)

  • Kim, Jin-Young;Kim, Yeong-Mee;Kim, Day-Sung;Im, Heung-Jae;Kim, Jeung-Ho;Kang, Seong-Kyu
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.91-100
    • /
    • 2007
  • The purposes of this research are to survey work-related risk factors of musculoskeletal disorders(MSDs) in various departments and tasks at general hospitals in non-manufacturing sectors, and to use basic data derived from the survey results in preventing work-related MSDs in hospital workers. Investigation started in March of 2006 and continued for 6 months in 220 general hospitals at Seoul, Incheon, Kyeongi, and Kangwon area. Investigators visited and interviewed workers in hospitals to identify the presence of tasks of musculoskeletal burden, the investigation results of ergonomic risk factors required by the Occupational Safety and Health Law, statistical analysis from questionnaire for musculoskeletal symptoms, and major departments and tasks that have such risk factors. Twenty-seven percents of hospitals finished the investigation of ergonomic risk factors, and 69% did not do the investigation while remained 4% did not have such factors in their hospitals. The rank order of major departments that had such musculoskeletal burdens was kitchen rooms of 143, managing departments/computer rooms/dispensaries of 137, physical treatment rooms of 109, nursing departments of 96, radiological and clinical laboratories of 63. Eighteen hospitals that did not hold legal duties by the section 148 of labor minister decree practiced prevention programs of MSDs according to the labor-management cooperation. Nursing departments ranked in the first place for the numbers of musculoskeletal symptoms of 438. Managing departments/computer rooms/dispensaries, kitchen rooms, and medical treatment departments held 127, 52 and 45 symptoms, respectively. The magnitude order of physical symptom areas followed shoulder of 185, backs and waist of 166, hand wrists of 120, necks of 110, and legs/feet of 106. The departments and jobs that had major work-related ergonomic risks were patient transporting, central supplying, patient nursing (moving patients into wheel-chairs, changing of patient posture and sheet alteration), manual transporting, operation, and managing/computer departments.

Analysis on the Water Footprint of Crystalline Silicon PV System (결정질 실리콘 태양광시스템의 물 발자국 산정에 대한 연구)

  • Na, Won-Cheol;Kim, Younghwan;Kim, Kyung Nam;Lee, Kwan-Young
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.449-456
    • /
    • 2014
  • There has been increasing concerns for the problems of water security in countries, caused by the frequent occurrence of localized drought due to the climate change and uncertainty of water balance. The importance of fresh water is emphasized as considerable amount of usable fresh water is utilized for power generation sector producing electricity. PV power system, the source of renewable energy, consumes water for the every steps of life cycle: manufacturing, installation, and operation. However, it uses relatively less water than the traditional energy sources such as thermal power and nuclear power sources. In this study, to find out the use of water for the entire process of PV power system from extracting raw materials to operating the system, the footprint of water in the whole process is measured to be analyzed. Measuring the result, the PV water footprint of value chain was $0.989m^3/MWh$ and the water footprint appeared higher specially in poly-Si and solar cell process. The following two reasons explain it: poly-Si process is energy-intensive process and it consumes lots of cooling water. In solar cell process, deionized water is used considerably for washing a high-efficiency crystalline silicon. It is identified that PV system is the source using less water than traditional ones, which has a critical value in saving water. In discussing the future energy policy, it is vital to introduce the concept of water footprint as a supplementary value of renewable energy.

Research Trend of Soft Magnetic Composite Materials with High Energy Efficiency (고에너지효율 연자성 복합 분말 소재의 연구개발 동향)

  • Kim, Hwi-Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.77-82
    • /
    • 2011
  • The use of soft magnetic materials have been increasing in the various industrial fields according to the increasing demand for high performance, automatic, miniaturing equipments in the recent our life. In this study, we investigated the effect of factors on the core loss and magnetic properties of electrical steel and soft magnetic composites. Furthermore, we reviewed the major efforts to reduce the core loss and improve the soft magnetic properties in the two main soft magnetic materials. Domain purification which results from reduced density of defects in cleaner electrical steels is combined with large grains to reduce hysteresis loss. The reduced thickness and the high electrical conductivity reduce the eddy current component of loss. Furthermore, the coating applied to the surface of electrical steel and texture control lead to improve high permeability and low core loss. There is an increasing interest in soft magnetic composite materials because of the demand for miniaturization of cores for power electronic applications. The SMC materials have a broad range of potential applications due to the possibility of true 3-D electromagnetic design and higher frequency operation. Grain size, sintering temperature, and the degree of porosity need to be carefully controlled in order to optimize structure-sensitive properties such as maximum permeability and low coercive force. The insulating coating on the powder particles in SMCs eliminates particle-to-particle eddy current paths hence minimizing eddy current losses, but it reduces the permeability and to a small extent the saturation magnetization. The combination of new chemical composition with optimum powder manufacturing processes will be able to result in improving the magnetic properties in soft magnetic composite materials, too.

Mandibular reconstruction with a ready-made type and a custom-made type titanium mesh after mandibular resection in patients with oral cancer

  • Lee, Won-bum;Choi, Won-hyuk;Lee, Hyeong-geun;Choi, Na-rae;Hwang, Dae-seok;Kim, Uk-kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.35.1-35.7
    • /
    • 2018
  • Background: After the resection at the mandibular site involving oral cancer, free vascularized fibular graft, a type of vascularized autograft, is often used for the mandibular reconstruction. Titanium mesh (T-mesh) and particulate cancellous bone and marrow (PCBM), however, a type of non-vascularized autograft, can also be used for the reconstruction. With the T-mesh applied even in the chin and angle areas, an aesthetic contour with adequate strength and stable fixation can be achieved, and the pores of the mesh will allow the rapid revascularization of the bone graft site. Especially, this technique does not require microvascular training; as such, the surgery time can be shortened. This advantage allows older patients to undergo the reconstructive surgery. Case presentation: Reported in this article are two cases of mandibular reconstruction using the ready-made type and custom-made type T-mesh, respectively, after mandibular resection. We had operated double blind peer-review process. A 79-year-old female patient visited the authors' clinic with gingival swelling and pain on the left mandibular region. After wide excision and segmental mandibulectomy, a pectoralis major myocutaneous flap was used to cover the intraoral defect. Fourteen months postoperatively, reconstruction using a ready-made type T-mesh (Striker-Leibinger, Freibrug, Germany) and iliac PCBM was done to repair the mandible left body defect. Another 62-year-old female patient visited the authors' clinic with pain on the right mandibular region. After wide excision and segmental mandibulectomy on the mandibular squamous cell carcinoma (SCC), reconstruction was done with a reconstruction plate and a right fibula free flap. Sixteen months postoperatively, reconstruction using a custom-made type T-mesh and iliac PCBM was done to repair the mandibular defect after the failure of the fibula free flap. The CAD-CAM T-mesh was made prior to the operation. Conclusions: In both cases, sufficient new-bone formation was observed in terms of volume and strength. In the CAD-CAM custom-made type T-mesh case, especially, it was much easier to fix screws onto the adjacent mandible, and after the removal of the mesh, the appearance of both patients improved, and the neo-mandibular body showed adequate bony volume for implant or prosthetic restoration.

Discharge Rate Prediction of a new Sandbypassing System in a Field (새로운 샌드바이패싱 시스템의 토출율 예측을 위한 현장실험 연구)

  • Kweon, Hyuck-Min;Park, Sang-Shin;Kwon, Oh-Kyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.4
    • /
    • pp.292-303
    • /
    • 2011
  • A new type of sand bypassing system is proposed for recovering the eroded beach in this study. This system provides an added methodology to the soft defence which is main recovery method for the coastal shore protection in the world. The study proposes a conceptional design and manufacturing procedure for the relatively small size machine of sand bypassing. In order to get the discharging volume information, the power capacity of the system is tested in the field. The discharge rate of the new system shows up to the expected maximum of 618 ton/hr which is 9.6% lower than that by theoretical calculation. It gives a resonable agreement in this system when the flow is assumed to be of the high density. In this study, the delivering volume of sand is estimated according to the discharge rate. The combination of 300 mm(12 inch) intake and 250 mm(10 inch) discharge pipe line has the pumping capacity of $103\;m^3/hr$ which is nearly the same as that of South Lake Worth Inlet sand bypassing system, Florida, U.S.A.. The proposed system added the mobility to its merit. The unit price of Florida's sand bypassing is $$8~9/m^3$ (US). The system would be economically suitable for small volume of sand because no additional equipment is necessary for the intake. The diesel fuel of 25~30 l/hr was consumed during the system operation. The multiple working system would be the next investigation target for large volume of sand.

The Analysis of Assessment Factors for Offshore Wind Port Site Evaluation (해상풍력 전용항만 입지선정 평가항목에 관한 연구)

  • Ko, HyunJeung
    • Journal of Korea Port Economic Association
    • /
    • v.28 no.3
    • /
    • pp.27-44
    • /
    • 2012
  • The offshore wind farm is increasingly attractive as one of future energy sources all over the world. In addition, the capacity of an offshore wind turbine gets larger and its physical characteristics are big and heavy. In this regard, a special port is necessary to assemble, store, and transport the offshore wind systems, supporting to form the offshore wind farms. Thus, this study aims to provide a policy maker which evaluation factors can significantly affect to the optimal site selection of a offshore wind port. For this, Fuzzy-AHP method is applied to capture the relative weights. The results of this study can be summarized as follows. Five criteria in level I was defined such as the accumulation factor, the regional factor, the economic factor, the location factor, and the consortium factor. Of these, the accumulation factor(37.4%), the location factor(34.2%), and the economic factor( 24.5%) were analyzed by major factors. In level II, three assessment items of each factor were selected so that total fifteen items were formed. To sum up, the site selection of offshore wind port should consider the density of the wind industry, cargo volume of securing the economic operation of terminals, the development degree of offshore wind related industry, and the proximity to the offshore wind farms. In other words, the construction of offshore wind port should be paid attention to considering not only the proximity to offshore wind farms but also the preference of turbine manufacturing companies.

Comparison of Environmental Impacts of Green and Traditional Buildings using Life Cycle Assessment (전과정평가(LCA)를 이용한 친환경 인증 건축물과 일반 건축물의 환경영향 비교 사례 연구)

  • Hong, Taehoon;Jeong, Kwangbok;Ji, Changyoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.58-65
    • /
    • 2014
  • This study aims to understand the environmental impact reduction of green buildings that are certified by Green standard for energy and environmental design(G-SEED). To ensure this end, this study assessed and compared the environmental impacts(global warning, ozone layer depletion, acidification, and eutrophication) of a G-SEED-certified elementary school building(green building) and an uncertified elementary school building(traditional building) using the life cycle assessment methodology. This study considered the environmental impacts from the material manufacturing, material transportation, on-site construction, and operation during 40 years. The comparison of the environmental impact intensity of two buildings showed that the green building generated much more environmental impacts than the traditional building. For example, the global warming potential of the green building was approximately 12.5% higher than of the traditional building since the global warming potential of the green building was 3.751 $t-CO_2eq./m^2$ while that of the traditional building was 3.282 $t-CO_2eq./m^2$. It signifies that the G-SEED doesn't guarantee the reduction of the environmental impacts in terms of four impact categories. Therefore, the G-SEED should be complemented and improved to achieve the environmental impact reduction.

A Study on the Resistance of Stress Corrosion Cracking due to Expansion Methods for Steam Generator Tubes in Nuclear Power Plants (원전 증기발생기 전열관의 확관방법에 따른 응력부식균열 저항성 연구)

  • Kim, Young Kyu;Song, Myung Ho
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.149-157
    • /
    • 2014
  • The steam generator tubes of nuclear power plants have various types of corrosion failures during the plant operation. The stress corrosion cracking which occurs on the outer surface of tube is called the secondary side stress corrosion cracking and mainly occurs in the expansion-transition area of tube. The causes are the concentration of impurities by the sludge pile-up related to the geometry of its region and the residual stress by tube expansion in the process of steam generator manufacturing. Especially the directionality and sizes of residual stresses are differed according to the tube expansion methods and the direction and the frequency of tube cracks depend on their characteristics. In bases on the plant experiences, it is notified that circumferential cracks of tubes expanded with explosive expansion method are dominantly occurred compared to those of tubes done with hydraulic expansion one. Therefore in this study, according to tube expansion methods frequencies and sizes of tube cracks with specific direction are compared by means of accelerated immersion test and also the crack morphology and the specific chemicals from water-chemistry environment are observed through the fracture surface examination.

Design of Experiment and Analysis Method for the Integrated Logistics System Using Orthogonal Array (직교배열을 이용한 통합물류시스템의 실험 설계 및 분석방법)

  • Park, Youl-Kee;Um, In-Sup;Lee, Hong-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5622-5632
    • /
    • 2011
  • This paper presents the simulation design and analysis of Integrated Logistics System(ILS) which is operated by using the AGV(Automated Guided Vehicle). To maximize the operation performances of ILS with AGV, many parameters should be considered such as the number, velocity, and dispatching rule of AGV, part types, scheduling, and buffer sizes. We established the design of experiment in a way of Orthogonal Array in order to consider (1)maximizing the throughput; (2)maximizing the vehicle utilization; (3)minimizing the congestion; and (4)maximizing the Automated Storage and Retrieval System(AS/RS) utilization among various critical factors. Furthermore, we performed the optimization by using the simulation-based analysis and Evolution Strategy(ES). As a result, Orthogonal Array which is conducted far fewer than ES significantly saved not only the time but the same outcome when compared after validation test on the result from the two methods. Therefore, this approach ensures the confidence and provides better process for quick analysis by specifying exact experiment outcome even though it provides small number of experiment.

Separation of 2,6-dimethylnaphthalene in Dimethylnaphthalene Isomers Mixture by Crystallization Operation (결정화 조작에 의한 Dimethylnaphthalene 이성체 혼합물 중의 2,6-dimethylnaphthalene의 분리)

  • Kang, Ho-Cheol;Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.116-120
    • /
    • 2014
  • Light cycle oil (LCO), one of the by-products of the catalytic cracking gasoline manufacturing process, contains a lot of valuable aromatics. In particular, 2,6-dimethylnaphthalene (2,6-DMN) contained in LCO has been becoming important as the basic material of polyethylene naphthalate plastic and liquid crystal polymer, etc. If it were possible to separate and purify the valuable aromatic hydrocarbons (such as 2,6-DMN) from LCO, which have only been used as fuel mixed with heavy oil, it would be very meaningful in terms of the efficient use of resources. We investigated the high-purity purification of 2,6-DMN by the combined method of melt crystallization (MC) and solute crystallization (SC). The enriched DMN isomer mixtures (concentration of 2,6-DMN : 10.43%) recovered from LCO by distillation-extraction combination and the crystal recovered by MC used as raw materials of MC and SC, respectively. The solvent of SC used was a mixture of methanol and acetone (60 : 40 wt%). The crystal of 2,6-DMN with a high-purity of 99.5% was recovered by MC-SC combination. We confirmed that the MC-SC combination was one of the very useful combinations for the high-purity purification of 2,6-DMN contained in the enriched DMN isomer mixtures.