• Title/Summary/Keyword: Manufacturing Information

Search Result 3,327, Processing Time 0.031 seconds

Color Image Segmentation and Textile Texture Mapping of 2D Virtual Wearing System (2D 가상 착의 시스템의 컬러 영상 분할 및 직물 텍스쳐 매핑)

  • Lee, Eun-Hwan;Kwak, No-Yoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.5
    • /
    • pp.213-222
    • /
    • 2008
  • This paper is related to color image segmentation and textile texture mapping for the 2D virtual wearing system. The proposed system is characterized as virtually wearing a new textile pattern selected by user to the clothing shape section, based on its intensity difference map, segmented from a 2D clothes model image using color image segmentation technique. Regardless of color or intensity of model clothes, the proposed system is possible to virtually change the textile pattern or color with holding the illumination and shading properties of the selected clothing shape section, and also to quickly and easily simulate, compare, and select multiple textile pattern combinations for individual styles or entire outfits. The proposed system can provide higher practicality and easy-to-use interface, as it makes real-time processing possible in various digital environment, and creates comparatively natural and realistic virtual wearing styles, and also makes semi-automatic processing possible to reduce the manual works to a minimum. According to the proposed system, it can motivate the creative activity of the designers with simulation results on the effect of textile pattern design on the appearance of clothes without manufacturing physical clothes and, as it can help the purchasers for decision-making with them, promote B2B or B2C e-commerce.

The Effect of the Supervisor's Transformational Leadership on Employees' Work Engagement : Focusing on the Mediating Effects of Psychological Contract Breach and Organizational Anomie (변혁적 리더십이 직무열의에 미치는 영향: 심리적 계약 위반과 조직아노미의 매개효과를 중심으로)

  • Bae, Chae-Yoon;Shin, Je-Goo
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.11
    • /
    • pp.281-307
    • /
    • 2016
  • The goal of this study was to verify that effectiveness of transformational leadership in impacting work engagement with the psychological contract breach among members of the organization and organizational anomie as mediating factors. The mediating effect of psychological contract breach and organizational anomie on the relationship between transformational leadership and work engagement was explored using a theoretical approach based on Social Exchange Theory, Social Information Processing Model and Job Demands- Resources Model. To avoid common method bias, the dependent variable was surveyed using employee peer review. 277 surveys were collected from 18 companies in diverse industries including manufacturing, distribution, and finance. The results of the analysis showed that transformational leadership has a significant positive effect on employees' work engagement, while having a significant negative effect on psychological contract breach and organizational anomie. In addition, psychological contract breach and organizational anomie were found to act as partial mediators in the relationship between transformational leadership and employees' work engagement. Overall, this study showed that if leaders at organizations can assist employees to overcome negative factors such as psychological contract breach and organizational anomie through transformational leadership, it is possible to improve employees' work engagement.

Developing the Electrode Board for Bio Phase Change Template (바이오 상변화 Template 위한 전극기판 개발)

  • Li, Xue Zhe;Yoon, Junglim;Lee, Dongbok;Kim, Sookyung;Kim, Ki-Bum;Park, Young June
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.715-719
    • /
    • 2009
  • The phase change electrode board for the bio-information detection through electrical property response of phase change material was developed in this study. We manufactured the electrode board using Aluminum first that is widely used in conventional semiconductor device process. Without further treatment, these aluminum electrodes tend to contain voids in PETEOS(plasma enhanced tetraethyoxysilane) material that are easily detected by cross-sectional SEM(Scanning Electron Microscope). The voids can be easily attacked and transformed into holes in between PETEOS and electrodes after etch back and washing process. In order to resolve this issue of Al electrode board, we developed a electrode board manufacturing method using low resistivity TiN, which has advantages in terms of the step-coverage of phase change($Ge_2Sb_2Te_5$, GST) thin film as well as thermodynamic stability, without etch back and washing process. This TiN material serves as the top and bottom electrode in PRAM(Phase-change Random Access Memory). The good connection between the TiN electrode and GST thin film was confirmed by observing the cross-section of TiN electrode board using SEM. The resistances of amorphous and crystalline GST thin film on TiN electrodes were also measured, and 1000 times difference between the amorphous and crystalline resistance of GST thin film was obtained, which is well enough for the signal detection.

A Study for Reliability Improvement of Belt Type Door System using FMECA (FMECA 적용을 통한 벨트식 도어시스템 신뢰성 향상에 관한 연구)

  • An, Cheon-Heon;Lee, Do-Sun;Son, Young-Jin;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.58-64
    • /
    • 2010
  • As a modem urban train is getting complex in terms of high-technology in its systems and components, the failure management should be performed with scientific and systematic technique. FMEA is a technique to analyze the failure trends of component parts and influences to the higher level system in order to discover the design incompleteness and potential defects, which is for improving reliability. Especially, FMECA (Failure Mode Effects, and Criticality Analysis) is used in case that the criticality that has an immense influence to the system is important. In case of urban train, in its design and manufacturing steps, FMEA is frequently used as an analysis technique to meet the safety objectives and eliminate potential hazards/failures since the concepts of reliability of train is introduced these days. Though, FMEA technique in the maintenances steps lacks in its investigation and applications yet. FMEA is also not applied to the trains operated by Seoul metro in the design and manufacture steps excepts the newest trains. In this paper, through analyzing the failures/maintenance data of the belt-type door systems used in trains operated in Seoul metro Line 1, which is accumulated in RIMS (Rolling-stock Information Maintenance System), FMEA procedures to the belt-type door engines are proposed. Especially, an effort is made, to approach the detailed FMECA procedures to the door magnet valve and switch and door engine devices which vastly influences the customer safety and satisfaction.

A Development of SCM Model in Chemical Industry Including Batch Mode Operations (회분식 공정이 포함된 화학산업에서의 공급사슬 관리 모델 개발)

  • Park, Jeung Min;Ha, Jin-Kuk;Lee, Euy Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.316-329
    • /
    • 2008
  • Recently the increased attention pays on the processing of multiple, relatively low quantity, high value-added products resulted in adoption of batch process in the chemical process industry such as pharmaceuticals, polymers, bio-chemicals and foods. As there are more possibilities of the improvement of operations in batch process than continuous processes, a lot of effort has been made to enhance the productivity and operability of batch processes. But the chemical process industry faces a range of uncertainties factors such as demands for products, prices of product, lead time for the supply of raw materials and in the production, and the distribution of product. And global competition has made it imperative for the process industries to manage their supply chains optimally. Supply chain management aims to integrate plants with their supplier and customers so that they can be managed as a single entity and coordinate all input/output flows (of materials, information) so that products are produced and distributed in the right quantities, to the right locations, and at the right time.The objective of this study is to solve the purchase, distribution, production planning and scheduling problem, which minimizes the total costs of production, inventory, and transportation under uncertainty. And development of SCM model in chemical industry including batch mode operations. Through that, the enterprise can respond to uncertainty. Also integrated process optimal planning and scheduling model for manufacturing supply chain. The result shows that, the advantage of supply chain integration are quality matters seen by customers and suppliers, order schedules, flexibility, cost reduction, and increase in sales and profits. Also, an integration of supply chain (production and distribution system) generates significant savings by trading off the costs associated with the whole, rather than minimizing supply chain costs separately.

The change of air lead concentrations in litharge making and smelting industries (일부 제련 및 리사지 사업장에서 공기중 납 노출농도의 변화)

  • Choi, Jae-Wook;Kim, Nam-Soo;Cho, Kwang-Sung;Ham, Jung-O;Lee, Byung-Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • To provide necessary information for future environmental monitoring of smelting and litharge making industries in Korea, environmental monitoring dataset of air lead concentration of 4 lead industries(1 primary smelting, 2 secondary smelting and 1 litharge making industry) were analyzed from 1994 to 2007. Data were compared using geometric mean and standard deviation with minimum and maximum values according to year of measurement, type of lead industries and type of operation of lead industries. The geometric mean and standard deviation of air concentration for a total of 1140 samples in all lead industries for overall 14 years were 70.7${\mu}g/m^3$ and 5.51 with minimum of 1${\mu}g/m^3$ and maximum of 9,185 ${\mu}g/m^3$. The overall geometric means of air concentration were above the permissible exposure levels(PEL) until year of 2001 and thereafter they were remained at the level of half of PEL. The geometric means of primary smelting, secondary smelting and litharge making industry for overall 14 years were 21.7${\mu}g/m^3$(number of samples: 353), 82.5${\mu}g/m^3$(number of samples: 357) and 164.2 ${\mu}g/m^3$(number of samples: 430) respectively. In primary smelting industry, the highest geometric mean air concentration was 35.4 ${\mu}g/m^3$ in the secondary smelting operation; followed by casting operation (24.9 ${\mu}g/m^3$) and melting operation (14.9 ${\mu}g/m^3$), respectively. On the other hand, in secondary smelting industries, the highest geometric mean air concentration was 125.4${\mu}g/m^3$ in melting operation; followed by casting operation (90.5${\mu}g/m^3$) and pre-treatment operation (43.4${\mu}g/m^3$), respectively. However, in litharge making industries, there were no significant differences of geometric mean air concentrations between litharge operation and stabilizer operation. The proportion of over PEL (50${\mu}g/m^3$) was highest in litharge industry and followed by secondary smelting industries. However The proportions of over PEL(${\mu}g./m^3.$) were decreased by the years of environmental monitoring. The significant reduction of mean air lead concentration since year of 2000 was observed due to more active environmental engineering control and new introduction of new operation in manufacturing process, but may be also influenced by non-engineering method such as reduction of operation hours or reduction of exposure time during actual environmental measurement by industrial hygienist according to more strict enforcement of occupational and safety law by the government.

Effect of Manufacturing Technology on Functional Fertilizer and Feed through Recycling of Fishery Resources (수산부산물을 재활용한 제조방법이 기능성 비료와 사료에 미치는 영향)

  • Ann, Seoung-Won;An, Gap-Sun;Cho, Jun-Kwon;Cho, Tae-Dong
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1575-1582
    • /
    • 2016
  • In this study, to provide basic information for design of a large-scale recycling system for fishery by-products, the food nutrient components, fertilizer components, and microbial composition of fertilizers and feed which were made of fishery by-products were analyzed before and after fermentation. The results of the analysis of the edible portion of fishery by-products indicated that calories per 100 g of crustaceans were the highest followed by those of fish and brown algae in order of precedence with values as follows; Korean Krill 94 Kcal, Portunus trituberculatus 65 Kcal, Lophiomus setigerus 58 Kcal, and Undaria pinnatifida 16 Kcal. As for changes in amino acids per 100 g of fishery by-products between before and after fermentation, calories per 100 g of P. trituberculatus decreased by 74.7% from 15.7 g to 4.0 g, that of L. setigerus decreased by 61.1% from 11.9 g to 4.6 g, that of Korean Krill decreased by 53.5% from 11.6 g to 5.4 g, and that of U. pinnatifida decreased by 49.4% from 1.7 g to 0.9 g. Among amino acids, those contained in fishery by-product fertilizers (liquid fertilizer) in large amounts were shown to be Glutaminic acid, Aspartic acid, Glycine, Lysin, and Leucine. The lipid content of Korean Krill decreased by 11.9% from 3.2 g to 2.8 g, that of L. setigerus increased by 2.0 times from 1.1 g to 2.2 g, that of P. trituberculatus increased by 4.5 times from 0.4 g to 1.7 g, and that of U. pinnatifida increased by 9.4 times from 0.2 g to 1.9 g. The ash (mineral) content of P. trituberculatus decreased by 82.5% from 26.2 g to 4.6 g, that of U. pinnatifida increased by 27.6% from 3.3 g to 4.2 g, that of Korean Krill increased by 21.9% from 3.1 g to 3.8 g, and that of L. setigerus increased by 88.7% from 1.2 g to 2.2 g. The microbial composition of liquid fertilizer using recycled fishery by-products was shown to be Bacteria, Actinomycetes, Fungi, Yeast, and Lactobacillus sp.

A Pilot Test on Stop-Smoking and Development of HBN-001 (금연이침저주파지극기(HBN-001)의 개발 및 금연효과 Pilot Test)

  • Cha, Yun-Yeop;Lee, Gui-Sun;Park, Roh-Gook
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.7 no.3
    • /
    • pp.161-166
    • /
    • 2012
  • With recent increase in interest on health through extension of life expectancies of people, desire of smokers to stop smoking is also getting stronger. Korean medicine uses Auricular Acupuncturing as a treatment to stop smoking. This Study examined whether Auricular Acupuncturing is actually effective by manufacturing device that can stimulate lung point and endocrine point that are known to be effective in stop smoking through low frequency stimulation. Firstly, Low Frequency Stimulator for Auricular Acupuncturing to quit smoking (HBN-001) was developed as an experimental device by combining low frequency stimulation to auricular acupuncture points and headset, and was pilot tested on 20 subjects. The average quantity of cigarette smoked prior to the application of the procedure was 12.19, which was reduced to 10.34 cigarettes after 2 weeks with more than 5 sessions of Auricular Acupuncturing. However, there was no statistically significant difference. The changes in the desire to smoke following the procedure included 4 subjects (20%) with no change, 4 (20%) with slight reduction, 4 (20%) with 25%~49% reduction, 6 (30%) with 50%~75% reduction, 1 (5%) with 75%~99% reduction and 1 (5%) with complete elimination of desire to smoke. Changes in how cigarette smoking tasted included 2 subjects (10%) with slight improvement, 7 (35%) with no change, 6 (30%) with slight worsening and 5 (25%) with substantially worsened taste. Based on the results of the Pilot Test, it appears that Auricular Acupuncturing could be affirmatively helpful in quitting smoking, and further researches in greater depth would be necessary in the future.

  • PDF

Highly Efficient Thermal Plasma Scrubber Technology for the Treatment of Perfluorocompounds (PFCs) (과불화합물(PFCs) 가스 처리를 위한 고효율 열플라즈마 스크러버 기술 개발 동향)

  • Park, Hyun-Woo;Cha, Woo Byoung;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.10-17
    • /
    • 2018
  • POU (point of use) scrubbers were applied for the treatment of waste gases including PFCs (perfluorocompounds) exhausted from the CVD (chemical vapor deposition), etching, and cleaning processes of semiconductor and display manufacturing plant. The GWP (global warming potential) and atmosphere lifetime of PFCs are known to be a few thousands higher than that of $CO_2$, and extremely high temperature more than 3,000 K is required to thermally decompose PFCs. Therefore, POU gas scrubbers based on the thermal plasma technology were developed for the effective control of PFCs and industrial application of the technology. The thermal plasma technology encompasses the generation of powerful plasma via the optimization of the plasma torch, a highly stable power supply, and the matching technique between two components. In addition, the effective mixture of the high temperature plasma and waste gases was also necessary for the highly efficient abatement of PFCs. The purpose of this paper was to provide not only a useful technical information of the post-treatment process for the waste gas scrubbing but also a short perspective on R&D of POU plasma gas scrubbers.

Effect of Inlet Shape on Thermal Flow Characteristics for Waste Gas in a Thermal Decomposition Reactor of Scrubber System (반도체 폐가스 처리용 열분해반응기의 입구형상이 열유동 특성에 미치는 영향에 관한 수치해석 연구)

  • Yoon, Jonghyuk;Kim, Youngbae;Song, Hyungwoon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.510-518
    • /
    • 2018
  • Recently, lots of interests have been concentrated on the scrubber system that abates waste gases produced from semiconductor manufacturing processes. An effective design of the thermal decomposition reactor inside a scrubber system is significantly important since it is directly related to the removal performance of pollutants and overall stabilities. In the present study, a computational fluid dynamics (CFD) analysis was conducted to figure out the thermal and flow characteristics inside the reactor of wet scrubber. In order to verify the numerical method, the temperature at several monitoring points was compared to that of experimental results. Average error rates of 1.27~2.27% between both the results were achieved, and numerical results of the temperature distribution were in good agreement with the experimental data. By using the validated numerical method, the effect of the reactor geometry on the heat transfer rate was also taken into consideration. From the result, it was observed that the flow and temperature uniformity were significantly improved. Overall, our current study could provide useful information to identify the fluid behavior and thermal performance for various scrubber systems.