• Title/Summary/Keyword: Manufacturing Big Data

Search Result 186, Processing Time 0.025 seconds

Autoencoder-based MCT Anomaly Detection Algorithm (오토인코더를 활용한 MCT 이상탐지 알고리즘 개발)

  • Kim, Min-hee;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.89-92
    • /
    • 2021
  • In a manufacturing fields, an abnormality or breakdown of equipment is a factor that causes product defects. Recently, with the spread of smart factory services, a lot of research to predict and prevent machine's failures is actively ongoing. However, there is a big difficulty in developing a classification model because the number of abnormal or failure data of the machine is severely smaller than normal data. In this paper, we present an algorithm for detecting abnormalities in an MCT at manufacturing work site depending on the differences between inputs and outputs of Autoencoder model and analyze its performance. The algorithm detects abnormalities using only features of normal data from manufacturing data of the MCT in which abnormal data does not exist.

  • PDF

제조부문과 사무간접부문에서의 6시그마 품질혁신 적용사례에 대한 비교 분석

  • Kim, Bo-Hyeong;Yun, Jae-Uk
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.11a
    • /
    • pp.157-163
    • /
    • 2006
  • There are big differences in six sigma applications between manufacturing processes and transactional processes. This paper analyzes the differences between two areas by examining 18 six sigma case studies in Korean companies. To characterize six sigma cases, a step-by-step checklist is developed based on 12-step DMAIC methodology proposed by US six sigma academy. On the basis of those characterized data, the differences between two areas are analyzed. The most significant differences is that statistical tools are widely used in manufacturing processes, but qualitative tools are used in transactional processes during improvement phase.

  • PDF

A Study on Total Production Time Prediction Using Machine Learning Techniques (머신러닝 기법을 이용한 총생산시간 예측 연구)

  • Eun-Jae Nam;Kwang-Soo Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.159-165
    • /
    • 2023
  • The entire industry is increasing the use of big data analysis using artificial intelligence technology due to the Fourth Industrial Revolution. The value of big data is increasing, and the same is true of the production technology. However, small and medium -sized manufacturers with small size are difficult to use for work due to lack of data management ability, and it is difficult to enter smart factories. Therefore, to help small and medium -sized manufacturing companies use big data, we will predict the gross production time through machine learning. In previous studies, machine learning was conducted as a time and quantity factor for production, and the excellence of the ExtraTree Algorithm was confirmed by predicting gross product time. In this study, the worker's proficiency factors were added to the time and quantity factors necessary for production, and the prediction rate of LightGBM Algorithm knowing was the highest. The results of the study will help to enhance the company's competitiveness and enhance the competitiveness of the company by identifying the possibility of data utilization of the MES system and supporting systematic production schedule management.

A Case Study on Product Production Process Optimization using Big Data Analysis: Focusing on the Quality Management of LCD Production (빅데이터 분석 적용을 통한 공정 최적화 사례연구: LCD 공정 품질분석을 중심으로)

  • Park, Jong Tae;Lee, Sang Kon
    • Journal of Information Technology Services
    • /
    • v.21 no.2
    • /
    • pp.97-107
    • /
    • 2022
  • Recently, interest in smart factories is increasing. Investments to improve intelligence/automation are also being made continuously in manufacturing plants. Facility automation based on sensor data collection is now essential. In addition, we are operating our factories based on data generated in all areas of production, including production management, facility operation, and quality management, and an integrated standard information system. When producing LCD polarizer products, it is most important to link trace information between data generated by individual production processes. All systems involved in production must ensure that there is no data loss and data integrity is ensured. The large-capacity data collected from individual systems is composed of key values linked to each other. A real-time quality analysis processing system based on connected integrated system data is required. In this study, large-capacity data collection, storage, integration and loss prevention methods were presented for optimization of LCD polarizer production. The identification Risk model of inspection products can be added, and the applicable product model is designed to be continuously expanded. A quality inspection and analysis system that maximizes the yield rate was designed by using the final inspection image of the product using big data technology. In the case of products that are predefined as analysable products, it is designed to be verified with the big data knn analysis model, and individual analysis results are continuously applied to the actual production site to operate in a virtuous cycle structure. Production Optimization was performed by applying it to the currently produced LCD polarizer production line.

Big Data-based Sensor Data Processing and Analysis for IoT Environment (IoT 환경을 위한 빅데이터 기반 센서 데이터 처리 및 분석)

  • Shin, Dong-Jin;Park, Ji-Hun;Kim, Ju-Ho;Kwak, Kwang-Jin;Park, Jeong-Min;Kim, Jeong-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.117-126
    • /
    • 2019
  • The data generated in the IoT environment is very diverse. Especially, the development of the fourth industrial revolution has made it possible to increase the number of fixed and unstructured data generated in manufacturing facilities such as Smart Factory. With Big Data related solutions, it is possible to collect, store, process, analyze and visualize various large volumes of data quickly and accurately. Therefore, in this paper, we will directly generate data using Raspberry Pi used in IoT environment, and analyze using various Big Data solutions. Collected by using an Sqoop solution collected and stored in the database to the HDFS, and the process is to process the data by using the solutions available Hive parallel processing is associated with Hadoop. Finally, the analysis and visualization of the processed data via the R programming will be used universally to end verification.

Detection of the Defected Regions in Manufacturing Process Data using DBSCAN (DBSCAN 기반의 제조 공정 데이터 불량 위치의 검출)

  • Choi, Eun-Suk;Kim, Jeong-Hun;Nasridinov, Aziz;Lee, Sang-Hyun;Kang, Jeong-Tae;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.7
    • /
    • pp.182-192
    • /
    • 2017
  • Recently, there is an increasing interest in analysis of big data that is coming from manufacturing industry. In this paper, we use PCB (Printed Circuit Board) manufacturing data to provide manufacturers with information on areas with high PCB defect rates, and to visualize them to facilitate production and quality control. We use the K-means and DBSCAN clustering algorithms to derive the high fraction of PCB defects, and compare which of the two algorithms provides more accurate results. Finally, we develop a system of MVC structure to visualize the information about bad clusters obtained through clustering, and visualize the defected areas on actual PCB images.

Analysis of the Differences in Recognition of Talented Human Resources Between Enterprises and Job Seekers (구인기업과 구직자 간에 인식하는 인재상의 차이 분석)

  • Hu, Sung-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.251-257
    • /
    • 2020
  • This study comparatively analyzed the differences in the talented human resources perceived by enterprises and job seekers in terms of recruitment trends of companies related to the 4th Industrial Revolution, focusing on 16 factors. The analysis data was collected from enterprises and job seekers related to the 4th Industrial Revolution, and the analysis method was applied to a convergence research methodology that mixes social network analysis and variance analysis using big data type. As a result, several things were verified. First, large enterprises emphasized communication, and small enterprises emphasized competency and confidence. Second, in the manufacturing industry, enterprises emphasized confidence and competence, and job seekers emphasized spec and passion. Third, in the service industry, enterprises emphasized personality and competence, and job seekers emphasized spec and global. Fourth, there was a big difference in talented human resources between enterprises and job seekers according to manufacturing and service industries. Based on these results, we discussed the opening of employment information for enterprises to reduce the recognition mismatch in the talented human resources.

Application of Open Source, Big Data Platform to Optimal Energy Harvester Design (오픈소스 기반 빅데이터 플랫폼의 에너지 하베스터 최적설계 적용 연구)

  • Yu, Eun-seop;Kim, Seok-Chan;Lee, Hanmin;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • Recently, as interest in the internet of things has increased, a vibration energy harvester has attracted attention as a power supply method for a wireless sensor. The vibration energy harvester can be divided into piezoelectric types, electromagnetic type and electrostatic type, according to the energy conversion type. The electromagnetic vibration energy harvester has advantages, in terms of output density and design flexibility, compared to other methods. The efficiency of an electromagnetic vibration energy harvester is determined by the shape, size, and spacing of coils and magnets. Generating all the experimental cases is expensive, in terms of time and money. This study proposes a method to perform design optimization of an electromagnetic vibration energy harvester using an open source, big data platform.

A Literature Review on Information Visualization of Manufacturing Industry Sector (제조업 분야의 정보시각화 문헌연구)

  • Chang, Tai-Woo
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.1
    • /
    • pp.91-104
    • /
    • 2016
  • Business intelligence based on the data analysis come into the spotlight. Especially, information visualization of the analysis result is treated significantly. given the interest in big data technologies. Because corporate managers want to use the results of data analysis in the decision-making process and the visualization technology will give help with cognitive function and operation function. In this paper, the status of information visualization is reviewed and analyzed from the viewpoint of manufacturing service. Several implications are drawn and it is expected that they will help to developers and administrators of manufacturing sector who want to adopt information visualization applications.

Standardization Strategy of Smart Factory for Improving SME's Global Competitiveness (중소기업의 글로벌 경쟁력 제고를 위한 스마트공장 표준화 전략)

  • Chung, Sunyang;Jeon, Joong Yang;Hwang, Jeong-Jae
    • Journal of Korea Technology Innovation Society
    • /
    • v.19 no.3
    • /
    • pp.545-571
    • /
    • 2016
  • The development of ICT brings a big change in manufacturing industries, and new information technology such as IoT, AR, and big data was applied on manufacturing process. As a result, the concept of smart factory has been introduced as a new manufacturing paradigm. In fact advanced countries like USA, Germany, and Japan have actively introduced smart factory in their manufacturing industries such as electronic, automobile, machinery, to improve production efficiency and quality. The manufacturing environment has been changed into flexible system, so that smart factory will be leading future manufacturing industries. Thes changes have more severe influence on Korean manufacturing industries. Mny industrial companies, have a strong interest in smart factory and they, particularly big enterprises, have been adopting smart factory to increase their manufacturing efficiencies. However, Korean small and medium-sized enterprises (SMEs) have many financial and technological difficulties so that the diffusion of smart factory in Korean SMEs has not been satisfiable up to present. However, smart factory is very important for enhancing their competitiveness in global market. Therefore, this study aims at identifying the standardization strategy of smart factory in so-called Korean 'roots industry' by presuming that the standardization will activate the diffusion of smart factory among Korean SMEs. For this purpose, first, this study examines the competitiveness of SMEs, especially in 'roots industry' and identifies the necessity of diffusion of smart factory among those SMEs. Second, based on the active review on the existing literature, this study identifies four factor groups that would influence the adoption or diffusion of standardized smart factory. They are technological, organizational, industrial and policy factors. Third, using those four factors, this study made two comprehensive case analyses on the adoption and diffusion of smart factory. These two companies belong to molding sector which is one of the important six sectors in 'root industry'. Finally, based on the theoretical and empirical analyse, this study suggests four strategies for activating the standardization of smart factory; international standardization, government-leading standardization, firm-leading standardization, and non-standardization.