• Title/Summary/Keyword: Manufacturing Analysis

Search Result 7,731, Processing Time 0.072 seconds

Analysis of the Development of Cross-border E-commerce in China's Manufacturing Industry

  • Huang, Shuqi;Ock, Young Seok
    • Asian Journal of Innovation and Policy
    • /
    • v.11 no.2
    • /
    • pp.238-257
    • /
    • 2022
  • As the global epidemic continues to worsen, the pressure on the supply chain is also increasing. In this context, Internet shopping has ushered in new development opportunities. Under the influence of globalization, the development of cross-border e-commerce (CB-EC) is particularly remarkable. As China is a big manufacturing country, the growth of CB-EC is a significant opportunity for Chinese goods to enter the international market. Therefore, this paper comprehensively analyzes the current situation of the integrated development of China's manufacturing industry and CB-EC from four aspects: the operation mode, development mode, policy environment, and development prospect of CB-EC in China's manufacturing sector. This paper constructs an evaluation system including 19 secondary indicators to rank the CB-EC development environment of 30 provinces in China that have established comprehensive pilot zones of CB-EC.

Production Equipment Monitoring System Based on Cloud Computing for Machine Manufacturing Tools

  • Kim, Sungun;Yu, Heung-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.197-205
    • /
    • 2022
  • The Cyber Physical System(CPS) is an important concept in achieving SMSs(Smart Manufacturing Systems). Generally, CPS consists of physical and virtual elements. The former involves manufacturing devices in the field space, whereas the latter includes the technologies such as network, data collection and analysis, security, and monitoring and control technologies in the cyber space. Currently, all these elements are being integrated for achieving SMSs in which we can control and analyze various kinds of producing and diagnostic issues in the cyber space without the need for human intervention. In this study, we focus on implementing a production equipment monitoring system related to building a SMS. First, we describe the development of a fog-based gateway system that links physical manufacturing devices with virtual elements. This system also interacts with the cloud server in a multimedia network environment. Second, we explain the proposed network infrastructure to implement a monitoring system operating on a cloud server. Then, we discuss our monitoring applications, and explain the experience of how to apply the ML(Machine Learning) method for predictive diagnostics.

Analysis of Insulation Resistance Change according to the Installation Environment of Food Manufacturing Electrical Equipment (식료품 제조업 전기설비의 설치환경에 따른 절연저항 변화 분석)

  • Youn Su Jeong;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.1
    • /
    • pp.34-41
    • /
    • 2023
  • In this study, S food manufacturing business located in Chungbuk was selected as the subject, and the transition in insulation resistance in major electrical equipment used in this food manufacturing business was analyzed for 4 years (2018-2021). It was confirmed that the insulation resistance decreased over time for all 18 electrical facilities. Insulation resistance changed due to environmental influences such as load characteristics and ambient temperature. Particularly in the case of the food manufacturing industry, it was confirmed that the decrease started after 2 years, although it varied depending on equipment and environmental influences. Furthermore, it was confirmed that management through predicting the management cycle of electrical equipment is possible by deriving a regression equation through regression analysis of insulation resistance measurement values.

Development and Validation of a Safety Climate Scale for Manufacturing Industry

  • Ghahramani, Abolfazl;Khalkhali, Hamid R.
    • Safety and Health at Work
    • /
    • v.6 no.2
    • /
    • pp.97-103
    • /
    • 2015
  • Background: This paper describes the development of a scale for measuring safety climate. Methods: This study was conducted in six manufacturing companies in Iran. The scale developed through conducting a literature review about the safety climate and constructing a question pool. The number of items was reduced to 71 after performing a screening process. Results: The result of content validity analysis showed that 59 items had excellent item content validity index (${\geq}0.78$) and content validity ratio (> 0.38). The exploratory factor analysis resulted in eight safety climate dimensions. The reliability value for the final 45-item scale was 0.96. The result of confirmatory factor analysis showed that the safety climate model is satisfactory. Conclusion: This study produced a valid and reliable scale for measuring safety climate in manufacturing companies.

Operation and performability analysis of modular cells (모듈러 셀의 운영과 수행성 해석)

  • Heo, Gyeon;Jang, Seok-Ho;Jung, Hyun-Ho;Lee, Sang-Moon;Woo, Gwang-Bang;Kim, Hak-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1263-1266
    • /
    • 1997
  • In a fault-tolerant modern manufacturing systms characterized by the configuration, in which automated redundant machines prone to unexpected failures are interconnected with other complex subsystems such as AGV's, robots, computer control systems to produce complete parts, faulures together with repairs and reconfigurations should be considered as the three basic events to be modeled for computing the performance of manufacturing systems. In this papre, transient analysis is applied to modular cell manufacturing systems form a performability viewpoint whose modeling adantage is that various performanc e measures can be evaluated compositely in the context of application. The hypothertical modular cells are modeled firstly with hybrid decomposition method and availability measures as special cases of performability are computed and comments on performabililty modeling analysis are mentioned.

  • PDF

Agent-based Mobile Robotic Cell Using Object Oriented & Queuing Petri Net Methods in Distribution Manufacturing System

  • Yoo, Wang-Jin;Cho, Sung-Bin
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.114-125
    • /
    • 2003
  • In this paper, we deal with the problem of modeling of agent-based robot manufacturing cell. Its role is becoming increasingly important in automated manufacturing systems. For Object Oriented & Queueing Petri Nets (OO&QPNs), an extended formalism for the combined quantitative and qualitative analysis of different systems is used for structure and performance analysis of mobile robotic cell. In the case study, the OO&QPN model of a mobile robotic cell is represented and analyzed, considering multi-class parts, non-preemptive priority and alternative routing. Finally, the comparison of performance values between Shortest Process Time (SPT) rule and First Come First Serve (FCFS) rule is suggested. In general, SPT rule is most suitable for parts that have shorter processing time than others.

New decoupled wavelet bases for multiresolution structural analysis

  • Wang, Youming;Chen, Xuefeng;He, Yumin;He, Zhengjia
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.175-190
    • /
    • 2010
  • One of the intractable problems in multiresolution structural analysis is the decoupling computation between scales, which can be realized by the operator-orthogonal wavelets based on the lifting scheme. The multiresolution finite element space is described and the formulation of multiresolution finite element models for structural problems is discussed. Various operator-orthogonal wavelets are constructed by the lifting scheme according to the operators of multiresolution finite element models. A dynamic multiresolution algorithm using operator-orthogonal wavelets is proposed to solve structural problems. Numerical examples demonstrate that the lifting scheme is a flexible and efficient tool to construct operator-orthogonal wavelets for multiresolution structural analysis with high convergence rate.

Spur gear forging tool manufacturing method considering elastic deformation due to shrink-fitting (열박음에 의한 탄성변형을 고려한 평기어금형 제작 방법에 관한 연구)

  • Kang, J.H.;Ko, B.H.;Jae, J.S.;Kang, S.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.381-385
    • /
    • 2006
  • This research introduces easy tool manufacturing method regarding tool manufacturing procedure. In the conventional method, wire cutting machining and lapping operation of corner and render region were performed after shrink-fitting to ensure the accuracy of gear profile. But lapping operation is very difficult due to corner and render is located deep inside of die. In this research, wire cutting operation was performed after $1^{st}$ ring was shrink-fitted to ease lapping operation and increase the accuracy of corner radius. Before $2^{nd}$ ring fitting, lapping was completed. Elastic deformation amount due to $2^{nd}$ ring fitting and cold forging was calculated through finite element analysis and wire cutting specification was offset in that amount. Comparison of gear dimension between analysis and forged part ensures the validity of new manufacturing methods.

  • PDF

Analysis of the Green House Gas Reduction Scenarios in the Cement Manufacturing Industry (시멘트산업의 온실가스 배출저감 시나리오 분석)

  • Kim, Hyun-Suk;Kang, Hee-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.912-921
    • /
    • 2006
  • This study examines greenhouse gas reduction potentials in cement manufacturing industry of Korea. An energy system model in the MARKAL (MARKet ALlocation) modeling framework was used in order to identify appropriate energy technologies and to quantify their possible implications In terms of greenhouse gas reduction. The model is characterized as mathematical tool for the long term energy system analysis provides an useful informations on technical assessment. Four scenarios are developed that covers the ti me span from 2000 to 2020. Being technology as a fundamental driving factor of the evolution of energy systems, it is essential to study the basic mechanisms of technological change and its role in developing more efficient, productive and clean energy systems. For this reasons, the learning curves on technologies for greenhouse gas reduction is specially considered. The analysis in this study shows that it is not easy to mitigate greenhouse gas with low cost in cement manufacturing industry under the current cap and trade method of Kyoto protocol.

Evaluation of intaglio surface trueness, wear, and fracture resistance of zirconia crown under simulated mastication: a comparative analysis between subtractive and additive manufacturing

  • Kim, Yong-Kyu;Han, Jung-Suk;Yoon, Hyung-In
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.122-132
    • /
    • 2022
  • PURPOSE. This in-vitro analysis aimed to compare the intaglio trueness, the antagonist's wear volume loss, and fracture load of various single-unit zirconia prostheses fabricated by different manufacturing techniques. MATERIALS AND METHODS. Zirconia crowns were prepared into four different groups (n = 14 per group) according to the manufacturing techniques and generations of the materials. The intaglio surface trueness (root-mean-square estimates, RMS) of the crown was measured at the marginal, axial, occlusal, and inner surface areas. Half of the specimens were artificially aged in the chewing simulator with 120,000 cycles, and the antagonist's volume loss after aging was calculated. The fracture load for each crown group was measured before and after hydrothermal aging. The intaglio trueness was evaluated with Welch's ANOVA and the antagonist's volume loss was assessed by the Kruskal-Wallis tests. The effects of manufacturing and aging on the fracture resistance of the tested zirconia crowns were determined by two-way ANOVA. RESULTS. The trueness analysis of the crown intaglio surfaces showed surface deviation (RMS) within 50 ㎛, regardless of the manufacturing methods (P = .053). After simulated mastication, no significant differences in the volume loss of the antagonists were observed among the zirconia groups (P = .946). The manufacturing methods and simulated chewing had statistically significant effects on the fracture resistance (P < .001). CONCLUSION. The intaglio surface trueness, fracture resistance, and antagonist's wear volume of the additively manufactured 3Y-TZP crown were clinically acceptable, as compared with those of the 4Y- or 5Y-PSZ crowns produced by subtractive milling.