Park, Byung Hyun;Jung, Jae Hwan;Oh, Seung Jun;Seo, Tae Seok
Proceedings of the Korean Vacuum Society Conference
/
2013.08a
/
pp.277.1-277.1
/
2013
Molecular diagnostics consists of three processes, which are a sample pretreatment, a nucleic acid amplification, and an amplicon detection. Among three components, sample pretreatment is an important process in that it can increase the limit of detection by purifying nucleic acid in biological sample from contaminants that may interfere with the downstream genetic analysis such as nucleic acid amplification and detection. To achieve point-of-care virus detection system, the sample pretreatment process needs to be simple, rapid, and automatic. However, the commercial RNA extraction kits such as Rneasy (Qiagen) or MagnaPure (Roche) kit are highly labor-intensive and time-consuming due to numerous manual steps, and so it is not adequate for the on-site sample preparation. Herein, we have developed a rotary microfluidic system to extract and purify the RNA without necessity of external mechanical syringe pumps to allow flow control using microfluidic technology. We designed three reservoirs for sample, washing buffer, and elution buffer which were connected with different dimensional microfluidic channels. By controlling RPM, we could dispense a RNA sample solution, a washing buffer, and an elution buffer successively, so that the RNA was captured in the sol-gel solid phase, purified, and eluted in the downstream. Such a novel rotary sample preparation system eliminates some complicated hardwares and human intervention providing the opportunity to construct a fully integrated genetic analysis microsystem.
This study aims to determine problems of the damage investigation system of aquaculture products resulting from natural disaster and to deduce improvement plans for such problems. The main problems revealed from this study were as follows: 1) detailed damage investigation is carried out only by one particular organization, 2) for aquaculture insurance subscribers another detailed damage investigation is conducted to reveal the causes of natural disaster by a joint investigator team formed according to a different legislation with a different purpose, 3) damage investigation is usually suffered from lack of labor, budget and time due to the restriction of natural damage to a certain period of season leading to the absence of quick reaction capability for irresistible natural disasters, and 4) there are no specified procedures and protocols for deciphering causes of a natural demage. The improvement plans to find solutions for such problems are as follows: 1) for the investigation, the object, method and role of the investigation organization should be clarified by improving the present legislation, 2) investigation methods for determining the demage causes should be systematized by making a manual to minimize disputes, and 3) supports for the investigation organization should be institutionalized to guarantee sufficient budget and manpower. Under the present circumstance with continuous natural damages, smooth procedures of damage compensation would lead to the management stability of aquaculture farms.
Journal of The Korean Society of Agricultural Engineers
/
v.63
no.1
/
pp.37-48
/
2021
The automatic-spreader of bedding materials was developed to reduce labor cost, and to achieve successful biosecurity in duck houses. Algorithm of the device was designed to realize a concept of the automatic unmanned operation including entire processes such as loading and spreading of the bedding materials. From the field measurement, the relationship between the expected water content reduction and weight of bedding materials per unit area according to the operation condition of the devices was induced. In the case of the measurement of particulate matters during the process of spreading works, the results of using both conventional manual-spreader and automatic-spreader were exceeded the allowable limit of inhalable and respirable dust, respectively. But, workers using automatic-spreader could be free from harmful aero-condition because they did not stay inside the facility during the spreading works. In addition, from the Duck hepatitis virus PCR test, influence on pulmonary tissue of the duck was not found. It could be expected that the development of the automatic-spreader of bedding materials for duck house can contribute to the advancement of duck breeding facilities.
Eun-Sung, Park;Ajay Patel, Kumar;Muhammad Akbar Andi, Arief;Rahul, Joshi;Hongseok, Lee;Byoung-Kwan, Cho
Korean Journal of Agricultural Science
/
v.49
no.3
/
pp.483-493
/
2022
It is important to improve the efficiency of plant breeding and crop yield to fulfill increasing food demands. In plant phenotyping studies, the capability to correlate morphological traits such as plant height, stem diameter, leaf length, leaf width, leaf angle and size of panicle of the plants has an important role. However, manual phenotyping of plants is prone to human errors and is labor intensive and time-consuming. Hence, it is important to develop techniques that measure plant phenotypic traits accurately and rapidly. The aim of this study was to determine the feasibility of point cloud data based on a 3D light detection and ranging (LiDAR) system for plant phenotyping. The obtained results were then verified through manually acquired data from the sorghum samples. This study measured the plant height, plant crown diameter and the panicle height and diameter. The R2 of each trait was 0.83, 0.94, 0.90, and 0.90, and the root mean square error (RMSE) was 6.8 cm, 1.82 cm, 5.7 mm, and 7.8 mm, respectively. The results showed good correlation between the point cloud data and manually acquired data for plant phenotyping. The results indicate that the 3D LiDAR system has potential to measure the phenotypes of sorghum in a rapid and accurate way.
Data anomalies seriously threaten the reliability of the bridge structural health monitoring system and may trigger system misjudgment. To overcome the above problem, an efficient and accurate data anomaly detection method is desiderated. Traditional anomaly detection methods extract various abnormal features as the key indicators to identify data anomalies. Then set thresholds artificially for various features to identify specific anomalies, which is the artificial experience method. However, limited by the poor generalization ability among sensors, this method often leads to high labor costs. Another approach to anomaly detection is a data-driven approach based on machine learning methods. Among these, the bidirectional long-short memory neural network (BiLSTM), as an effective classification method, excels at finding complex relationships in multivariate time series data. However, training unprocessed original signals often leads to low computation efficiency and poor convergence, for lacking appropriate feature selection. Therefore, this article combines the advantages of the two methods by proposing a deep learning method with manual experience statistical features fed into it. Experimental comparative studies illustrate that the BiLSTM model with appropriate feature input has an accuracy rate of over 87-94%. Meanwhile, this paper provides basic principles of data cleaning and discusses the typical features of various anomalies. Furthermore, the optimization strategies of the feature space selection based on artificial experience are also highlighted.
Farooq, Muhammad Umer;Kazi, Abdul Karim;Latif, Mustafa;Alauddin, Shoaib;Kisa-e-Zehra, Kisa-e-Zehra;Baig, Mirza Adnan
International Journal of Computer Science & Network Security
/
v.22
no.11
/
pp.213-221
/
2022
Intelligent Character Recognition System for Account Payable (ICRS AP) Automation represents the process of capturing text from scanned invoices and extracting the key fields from invoices and storing the captured fields into properly structured document format. ICRS plays a very critical role in invoice data streamlining, we are interested in data like Vendor Name, Purchase Order Number, Due Date, Total Amount, Payee Name, etc. As companies attempt to cut costs and upgrade their processes, accounts payable (A/P) is an example of a paper-intensive procedure. Invoice processing is a possible candidate for digitization. Most of the companies dealing with an enormous number of invoices, these manual invoice matching procedures start to show their limitations. Receiving a paper invoice and matching it to a purchase order (PO) and general ledger (GL) code can be difficult for businesses. Lack of automation leads to more serious company issues such as accruals for financial close, excessive labor costs, and a lack of insight into corporate expenditures. The proposed system offers tighter control on their invoice processing to make a better and more appropriate decision. AP automation solutions provide tighter controls, quicker clearances, smart payments, and real-time access to transactional data, allowing financial managers to make better and wiser decisions for the bottom line of their organizations. An Intelligent Character Recognition System for AP Automation is a process of extricating fields like Vendor Name, Purchase Order Number, Due Date, Total Amount, Payee Name, etc. based on their x-axis and y-axis position coordinates.
Jingxiao Liu;Yujie Wei ;Bingqing Chen;Hae Young Noh
Smart Structures and Systems
/
v.31
no.4
/
pp.325-334
/
2023
Computer vision-based damage detection enables non-contact, efficient and low-cost bridge health monitoring, which reduces the need for labor-intensive manual inspection or that for a large number of on-site sensing instruments. By leveraging recent semantic segmentation approaches, we can detect regions of critical structural components and identify damages at pixel level on images. However, existing methods perform poorly when detecting small and thin damages (e.g., cracks); the problem is exacerbated by imbalanced samples. To this end, we incorporate domain knowledge to introduce a hierarchical semantic segmentation framework that imposes a hierarchical semantic relationship between component categories and damage types. For instance, certain types of concrete cracks are only present on bridge columns, and therefore the noncolumn region may be masked out when detecting such damages. In this way, the damage detection model focuses on extracting features from relevant structural components and avoid those from irrelevant regions. We also utilize multi-scale augmentation to preserve contextual information of each image, without losing the ability to handle small and/or thin damages. In addition, our framework employs an importance sampling, where images with rare components are sampled more often, to address sample imbalance. We evaluated our framework on a public synthetic dataset that consists of 2,000 railway bridges. Our framework achieves a 0.836 mean intersection over union (IoU) for structural component segmentation and a 0.483 mean IoU for damage segmentation. Our results have in total 5% and 18% improvements for the structural component segmentation and damage segmentation tasks, respectively, compared to the best-performing baseline model.
Radish and Chinese cabbage are the most produced and consumed vegetables in Korea. The mechanization of harvesting operations is necessary to minimize the need for manual labor. This study to develop and evaluate the performance of a multi-purpose driving platform that can apply modular Radish and Chinese cabbage harvesting devices. The multi-purpose driving platform consisted of driving, device control, engine, hydraulic, harvesting, conveying, and loading part. Radish and Chinese cabbage harvesting conducted using the multi-purpose driving platform each harvesting module. The performance of the multi-purpose driving platform was evaluated the field efficiency and loss rate. The total Radish harvesting operation time 34.3 min., including 28.8 min., of harvesting time, 1.9 min., of turning time, and 3.6 min., of replacement time of bulk bag. During Radish harvesting, the field efficiency and average loss rate of the multi-purpose driving platform were 2.0 hr/10a and 3.1 %. Chinese cabbage harvesting operation 49.3 min., including 26.6 min., of harvesting time, 4.6 min., of turning time, and 18.1 min., of replacement time of bulk bag. During Chinese cabbage harvesting, the field efficiency and average loss rate of the multi-purpose driving platform 2.1 hr/10a and 0.1 %. Performance evaluation of the multi-purpose driving platform that harvesting work was possible by installing Radish and Chinese cabbage harvest modules. Performance analysis through harvest performance evaluation in various Radish and Chinese cabbage cultivation environments is necessary.
In this study, we propose a technique to automatically generate transfer documents using sensor data from livestock manure transfer systems. The research involves analyzing sensor data and applying machine learning techniques to derive optimized outcomes for livestock manure transfer documents. By comparing and contrasting with existing documents, we present a method for automatic document generation. Specifically, we propose the utilization of Gradient Boosting, a machine learning algorithm. The objective of this research is to enhance the efficiency of livestock manure and liquid byproduct management. Currently, stakeholders including producers, transporters, and processors manually input data into the livestock manure transfer management system during the disposal of manure and liquid byproducts. This manual process consumes additional labor, leads to data inconsistency, and complicates the management of distribution and treatment. Therefore, the aim of this study is to leverage data to automatically generate transfer documents, thereby increasing the efficiency of livestock manure and liquid byproduct management. By utilizing sensor data from livestock manure and liquid byproduct transport vehicles and employing machine learning algorithms, we establish a system that automates the validation of transfer documents, reducing the burden on producers, transporters, and processors. This efficient management system is anticipated to create a transparent environment for the distribution and treatment of livestock manure and liquid byproducts.
Eric M. Perloff;Tom J. Crijns;Casey M. O'Connor;David Ring;Patrick G. Marinello;Science of Variation Group
Clinics in Shoulder and Elbow
/
v.26
no.2
/
pp.156-161
/
2023
Background: We analyzed association between viewing two-dimensional computed tomography (2D CT) images in addition to radiographs with radial head treatment recommendations after accounting for patient and surgeon factors in a survey-based experiment. Methods: One hundred and fifty-four surgeons reviewed 15 patient scenarios with terrible triad fracture dislocations of the elbow. Surgeons were randomized to view either radiographs only or radiographs and 2D CT images. The scenarios randomized patient age, hand dominance, and occupation. For each scenario, surgeons were asked if they would recommend fixation or arthroplasty of the radial head. Multi-level logistic regression analysis identified variables associated with radial head treatment recommendations. Results: Reviewing 2D CT images in addition to radiographs had no statistical association with treatment recommendations. A higher likelihood of recommending prosthetic arthroplasty was associated with older patient age, patient occupation not requiring manual labor, surgeon practice location in the United States, practicing for five years or less, and the subspecialties "trauma" and "shoulder and elbow." Conclusions: The results of this study suggest that in terrible triad injuries, the imaging appearance of radial head fractures has no measurable influence on treatment recommendations. Personal surgeon factors and patient demographic characteristics may have a larger role in surgical decision making. Level of evidence: Level III, therapeutic case-control study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.