• Title/Summary/Keyword: Manner of Death

Search Result 670, Processing Time 0.027 seconds

Anti-oxidative Effect of Some Plant Extracts Against Nitric Oxide-induced Oxidative Stress on Neuronal Cell (Nitric oxide에 의해 산화적 스트레스를 받은 Neuronal cell에 항산화 효과를 가지는 수종 생약추출물의 검색)

  • Koo, Uk;Lee, Hak-Ju;Lee, Dong-Ho;Lee, Hyun-Jung;Ham, Ah-Rom;Cho, Eun-Young;Mar, Woong-Chon
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.4
    • /
    • pp.290-294
    • /
    • 2008
  • The objective of this study is screening the anti-oxidative effects of several plant MeOH extracts against oxidative stress in Neuroblastoma cell. Oxidative stress has been implicated in the pathogenesis of many neurotoxicity, neurodegenerative disorders and cell death. This oxidative stress is generated by ROS (Reactive Oxygen Species) such as nitric oxide, nitrogen dioxide, peroxyl, superoxide ($O_2^-$), hydroxyl, alkoxyl. So, in the present study, we induced oxidative stress by treatment of sodium nitroprusside (2.5 mM) in human neuroblastoma SH-SY5Y cell which was treated samples before 24hr, and cell viability was measured by MTT reduction assay. Of those tested, the extracts of Paeonia japonica (roots), Eucommia ulmoides (炒)(barks), Paeonia japonica (曝乾)(roots), Phyllostachys bambusoides (stems), Polygala tenuifolia (去心, 炒)(roots), Paeonia japonica (roots), Polygala tenuifolia (roots), Machilus thunbergii (barks), Mallotus japonicus (leaves), Poria cocos (whole), Sophora flavescens (roots), Angelica tenuissima (roots), Angelica gigas (當歸尾)(roots) showed anti-oxidative effects[$EC_{50}$<15.20 ${\mu}g$/ml(Carnosine:Positive control)]in dose dependent manner.

EGb 761 Protects Cardiac Microvascular Endothelial Cells against Hypoxia/Reoxygenation Injury and Exerts Inhibitory Effect on the ATM Pathway

  • Zhang, Chao;Wang, Deng-Feng;Zhang, Zhuang;Han, Dong;Yang, Kan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.584-590
    • /
    • 2017
  • Ginkgo biloba extract (EGb 761) has been widely used clinically to reduce myocardial ischemia reperfusion injury (MIRI). Microvascular endothelial cells (MVECs) may be a proper cellular model in vitro for the effect and mechanism study against MIRI. However, the protective effect of EGb 761 on MVECs resisting hypoxia/reoxygenation (H/R) injury is little reported. In this study, H/R-injured MVECs were treated with EGb 761, and then the cell viability, apoptosis, ROS production, SOD activity, caspase-3 activity, and protein level of ATM, ${\gamma}$-H2AX, p53, and Bax were measured. ATM siRNA was transfected to study the changes of protein in the ATM pathway. EGb 761 presented protective effect on H/R-injured MVECs, with decreasing cell death, apoptosis, and ROS, and elevated SOD activity. Next, EGb 761 could inhibit H/R-induced ATM, ${\gamma}$-H2AX, p53, and Bax in a dose-dependent manner. Moreover, ATM siRNA also could inhibit H/R-induced ATM, ${\gamma}$-H2AX, p53, and Bax. Overall, these findings verify that EGb 761 protects cardiac MVECs from H/R injury, and for the first time, illustrate the influence on the ATM pathway and apoptosis by EGb 761 via dampening ROS.

H9 Induces Apoptosis via the Intrinsic Pathway in Non-Small-Cell Lung Cancer A549 Cells

  • Kwon, Sae-Bom;Kim, Min-Je;Sun Young, Ham;Park, Ga Wan;Choi, Kang-Duk;Jung, Seung Hyun;Do-Young, Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.343-352
    • /
    • 2015
  • H9 is an ethanol extract prepared from nine traditional/medicinal herbs. This study was focused on the anticancer effect of H9 in non-small-cell lung cancer cells. The effects of H9 on cell viability, apoptosis, mitochondrial membrane potential (MMP; ${\Delta}\psi_{m}$), and apoptosisrelated protein expression were investigated in A549 human lung cancer cells. In this study, H9-induced apoptosis was confirmed by propidium iodide staining, expression levels of mRNA were determined by reverse transcriptase polymerase chain reaction, protein expression levels were checked by western blot analysis, and MMP (${\Delta}\psi_{m}$) was measured by JC-1 staining. Our results indicated that H9 decreased the viability of A549 cells and induced cell morphological changes in a dose-dependent manner. H9 also altered expression levels of molecules involved in the intrinsic signaling pathway. H9 inhibited Bcl-xL expression, whereas Bax expression was enhanced and cytochrome C was released. Furthermore, H9 treatment led to the activation of caspase-3/caspase-9 and proteolytic cleavage of poly(ADP-ribose) polymerase; the MMP was collapsed by H9. However, the expression levels of extrinsic pathway molecules such as Fas/FasL, TRAIL/TRAIL-R, DR5, and Fas-associated death receptor were downregulated by H9. These results indicated that H9 inhibited proliferation and induced apoptosis by activating intrinsic pathways but not extrinsic pathways in human lung cancer cells. Our results suggest that H9 can be used as an alternative remedy for human non-small-cell lung cancer.

Evaluation of phlorofucofuroeckol-A isolated from Ecklonia cava (Phaeophyta) on anti-lipid peroxidation in vitro and in vivo

  • Lee, Ji-Hyeok;Ko, Ju-Young;Oh, Jae-Young;Kim, Eun-A;Kim, Chul-Young;Jeon, You-Jin
    • ALGAE
    • /
    • v.30 no.4
    • /
    • pp.313-323
    • /
    • 2015
  • Lipid peroxidation means the oxidative degradation of lipids. The process from the cell membrane lipids in an organism is generated by free radicals, and result in cell damage. Phlorotannins, well-known marine brown algal polyphenols, have been utilized in functional food supplements as well as in medicine supplements to serve a variety of purposes. In this study, we assessed the potential anti-lipid peroxidation activity of phlorofucofuroeckol-A (PFF-A), one of the phlorotannins, isolated from Ecklonia cava by centrifugal partition chromatography in 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-stimulated Vero cells and zebrafish system. PFF-A showed the strongest scavenging activity against alkyl radicals of all other reactive oxygen species (ROS) and exhibited a strong protective effect against ROS and a significantly strong inhibited of malondialdehyde in AAPH-stimulated Vero cells. The apoptotic bodies and pro-apoptotic proteins Bax and caspase-3, which were induced by AAPH, were strongly inhibited by PFF-A in a dose-dependent manner and expression of Bcl-xL, an anti-apoptotic protein, was induced. In the AAPH-stimulated zebrafish model, additionally PFF-A significantly inhibited ROS and cell death, as well as exhibited a strong protective effect against lipid peroxidation. Therefore, these results suggest that PFF-A has excellent protective effects against ROS and lipid peroxidation induced by AAPH in both an in vitro Vero cell model and an in vivo zebrafish model.

Purification of Anti PC-3 Prostate Cancer Agents from Gleditsiae Spina (조각자(皂角刺)에서 PC-3 생장 억제 성분 정제)

  • Lim, Se-Hyun;Lee, Byung-Ho;Kim, Young-Gyun;Cho, Su-In;Kim, Yong-Seong;Lim, Chi-Yeon
    • The Journal of Internal Korean Medicine
    • /
    • v.33 no.2
    • /
    • pp.197-208
    • /
    • 2012
  • Objectives : Gleditsiae Spina has the effects of expelling toxins, draining pus, invigorating blood and resolving abscesses. Some clinicians apply the herb for patients suffering from cancer. However, its anti-cancer activities are not well understood. In the present study, anti-tumor agents from Gleditsiae Spina were purified. Methods : The viability of the PC-3 cell line was determined using MTT assay, and the induction of apoptosis by Gleditsiae Spina extract in PC-3 cells was measured by Annexin-V/propidium iodide double staining assay detected by flow cytometry. TLC and HPLC analysis were used to separate and identify the anti-cancer agents. Results : Treatment of the extract resulted in significant decreased cell viability of PC-3 cells in a dose- and time-dependent manner. Dose-dependent apoptotic cell death was also measured by flow cytometry analysis. The anti-cancer agents were successfully separated and identified by using TLC and HPLC analysis and the most potential agent among them was separated from EtOAC fraction. Conclusions : These results might be applied in developing new drugs from natural resources like Korean traditional medicine, and also support the clinical usefulness of herbal medicine.

Induction of Caspase-9, Biochemical Assessment and Morphological Changes Caused by Apoptosis in Cancer Cells Treated with Goniothalamin Extracted from Goniothalamus macrophyllus

  • Alabsi, Aied Mohammed;Ali, Rola;Ali, Abdul Manaf;Harun, Hazlan;Al-Dubai, Sami Abdo Radman;Ganasegeran, Kurubaran;Alshagga, Mustafa Ahmed;Salem, Sameer Dirhim;Kasim, Noor Hayaty Binti Abu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6273-6280
    • /
    • 2013
  • Goniothalamin, a natural compound extracted from Goniothalamus sp. belonging to the Annonacae family, possesses anticancer properties towards several tumor cell lines. This study focused on apoptosis induction by goniothalamin (GTN) in the Hela cervical cancer cell line. Cell growth inhibition was measured by MTT assay and the $IC_{50}$ value of goniothalamin was $3.2{\pm}0.72{\mu}g/ml$. Morphological changes and biochemical processes associated with apoptosis were evident on phase contrast microscopy and fluorescence microscopy. DNA fragmentation, DNA damage, caspase-9 activation and a large increase in the sub-G1 and S cell cycle phases confirmed the occurrence of apoptosis in a time-dependent manner. It could be concluded that goniothalamin show a promising cytotoxicity effect against cervical cancer cells (Hela) and the cell death mode induced by goniothalamin was apoptosis.

Mechanism of Apoptosis Induced by Diazoxide, a $K^{+}$ Channel Opener, in HepG2 Human Hepatoma Cells

  • Lee, Yong-Soo
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.305-313
    • /
    • 2004
  • The effect of diazoxide, a $K^{+}$channel opener, on apoptotic cell death was investigated in HepG2 human hepatoblastoma cells. Diazoxide induced apoptosis in a dose-dependent manner and this was evaluated by flow cytometric assays of annexin-V binding and hypodiploid nuclei stained with propidium iodide. Diazoxide did not alter intracellular $K^{+}$concentration, and various inhibitors of $K^{+}$channels had no influence on the diazoxide-induced apoptosis; this implies that $K^{+}$channels activated by diazoxide may be absent in the HepG2 cells. However, diazoxide induced a rapid and sustained increase in intracellular $Ca^{2+}$ concentration, and this was completely inhibited by the extracellular $Ca^{2+}$ chelation with EGTA, but not by blockers of intracellular $Ca^{2+}$ release (dantrolene and TMB-8). This result indicated that the diazoxide-induced increase of intracellular $Ca^{2+}$ might be due to the activation of a Ca2+ influx pathway. Diazoxide-induced $Ca^{2+}$ influx was not significantly inhibited by either voltage-operative $Ca^{2+}$ channel blockers (nifedipinen or verapamil), or by inhibitors of $Na^{+}$, $Ca^{2+}$-exchanger (bepridil and benzamil), but it was inhibited by flufenamic acid (FA), a $Ca^{2+}$-permeable nonselective cation channel blocker. A quantitative analysis of apoptosis by flow cytometry revealed that a treatment with either FA or BAPTA, an intracellular $Ca^{2+}$ chelator, significantly inhibited the diazoxide-induced apoptosis. Taken together, these results suggest that the observed diazoxide-induced apoptosis in the HepG2 cells may result from a $Ca^{2+}$ influx through the activation of $Ca^{2+}$-permeable non-selective cation channels. These results are very significant, and they lead us to further suggest that diazoxide may be valuable for the therapeutic intervention of human hepatomas.

Apoptosis Induction, Cell Cycle Arrest and in Vitro Anticancer Activity of Gonothalamin in a Cancer Cell Lines

  • Alabsi, Aied M.;Ali, Rola;Ali, Abdul Manaf;Al-Dubai, Sami Abdo Radman;Harun, Hazlan;Kasim, Noor H. Abu;Alsalahi, Abdulsamad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5131-5136
    • /
    • 2012
  • Cancer is one of the major health problems worldwide and its current treatments have a number of undesired adverse side effects. Natural compounds may reduce these. Currently, a few plant products are being used to treat cancer. In this study, goniothalamin, a natural occurring styryl-lactone extracted from Goniothalamus macrophyllus, was investigated for cytotoxic properties against cervical cancer (HeLa), breast carcinoma (MCF-7) and colon cancer (HT29) cells as well as normal mouse fibroblast (3T3) using MTT assay. Fluorescence microscopy showed that GTN is able to induce apoptosis in HeLa cells in a time dependent manner. Flow cytometry further revealed HeLa cells treated with GTN to be arrested in the S phase. Phosphatidyl serine properties present during apoptosis enable early detection of the apoptosis in the cells. Using annexin V/PI double staining it could be shown that GTN induces early apoptosis on HeLa cells after 24, 48 and 72 h. It could be concluded that goniothalamin showing a promising cytotoxicity effect against several cancer cell lines including cervical cancer cells (HeLa) with apoptosis as the mode of cell death induced on HeLa cells by Goniothalamin was.

Mechanism of Inhibition of Human Cytochrome P450 1A1 and 1B1 by Piceatannol

  • Chae, Ah-Reum;Shim, Jae-Ho;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.336-342
    • /
    • 2008
  • The resveratrol analogue piceatannol (3,5,3',4'-tetrahydroxy-trans-stilbene) is a polyphenol present in grapes and wine and reported to have anti-carcinogenic activities. To investigate the mechanism of anticarcinogenic activities of piceatannol, the effects on CYP 1 enzymes were determined in Escherichia coli membranes coexpressing recombinant human CYP1A1, CYP1A2 or CYP1B1 with human NADPH-P450 reductase. Piceatannol showed a strong inhibition of CYP1A1 and CYP1B1 in a concentration-dependent manner, and $IC_{50}$ of human CYP1A1 and CYP1B1 was 5.8 ${\mu}M$ and 16.6 ${\mu}M$, respectively. However, piceatannol did not inhibit CYP1A2 activity in the concentration of up to 100 ${\mu}M$. Piceatannol exhibited 3-fold selectivity for CYP1B1 over CYP1A1. The mode of inhibition of piceatannol was non-competitive for CYP1A1 and CYP1B1. The result that piceatannol did not inhibit CYP1B1-mediated $\alpha$-naphthoflavone ($\alpha$-NF) metabolism suggests piceatannol may act as a non-competitive inhibitor as well. In human prostate carcinoma PC-3 cells, piceatannol induces apoptosis and prevents Aktmediated signal pathway. Taken together, abilities of piceatannol to induce apoptotic cell death as well as CYP1 enzyme inhibition make this compound a useful tool for cancer chemoprevention.

Porphyra tenera induces apoptosis of oral cancer cells (구강암 세포주에서 김 추출물에 의한 세포자멸사 유도)

  • Kim, Sang Chan;Lee, Jong Rok;Park, Sook Jahr
    • The Korea Journal of Herbology
    • /
    • v.30 no.2
    • /
    • pp.25-30
    • /
    • 2015
  • Objectives : Laver (Porphyra tenera), a red algae species, is one of the most widely consumed edible seaweed in Korea. Laver contains various substances such as essential amino acid, fiber, minerals and polyphenols that benefit human health. In the present study, we prepared ethanol extracts from commercially processed product of Porphyra tenera, and evaluated the growth inhibitory effect against human oral squamous carcinoma YD-10B cells. Methods : Cell viability was measured by MTT assay. Apoptosis was confirmed by TUNEL assay and flow cytometry with the green fluorescent dye FITC annexin V entering apoptotic cells and the red fluorescent dye PI not entering. The expression of the relevant proteins was detected using Western blot. Results : Ethanol extracts of Porphyra tenera (PTE, $50-200{\mu}g/m{\ell}$) caused a significant decrease of cell viability in a dose dependant manner. The cell death occurred as a result of apoptotic process as determined by TUNEL assay and flow cytometric analysis. In line with this observation, decrease in procaspase proteins and increase in cytosolic cytochrome c were observed in cells treated with PTE. In addition, exposure to PTE decreased the expression levels of Bcl-2, and induced PARP cleavage and AIF translocation from mitochondria to nucleus. Conclusions : In conclusion, PTE exerts anti-cancer effects by inducing apoptosis via caspase activation and AIF nuclear translocation in YD-10B cells. These results provide evidence for the possible therapeutic effect of Porphyra tenera in oral cancer cells.