• Title/Summary/Keyword: Mannanoligosaccharide

Search Result 6, Processing Time 0.022 seconds

Effects of Different Dietary Levels of Mannanoligosaccharide on Growth Performance and Gut Development of Broiler Chickens

  • Yang, Y.;Iji, P.A.;Choct, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.7
    • /
    • pp.1084-1091
    • /
    • 2007
  • Different levels of dietary mannanoligosaccharide (Bio-MOS, Alltech Inc.) were evaluated for their efficacy on performance and gut development of broiler chickens during a 6-week experimental period. Experimental diets contained (g MOS/kg diet) a low (0.5 g during the entire period), medium (1 g during the entire period), high (2 g during the entire period), or step down (2 g in the first week; 1 g in the second and third week; 0.5 g in the last three weeks) level of MOS. Control diets included a negative and a positive control (zinc bacitracin, ZnB, 50 ppm and 30 ppm in the first and last three weeks, respectively). MOS supplementation improved the growth performance of young birds and the effects became less when the birds got older. The growth response of birds was more obvious at the high dosage level of MOS treatment than the other MOS treatments and the growth performance of birds fed on the high MOS diet was comparable to that of birds fed on the ZnB diet. Depending on the dosage level and the age of birds, MOS seemed to reduce the size of the liver and the relative length of the small intestine but did not affect the relative weight of the other visceral organs (proventriculus, gizzard, pancreas, bursa and spleen) and that of the small intestine. A numerical increase in the small intestine digestibility of nutrients was noticed in the young birds fed on the MOS diet(s), but not in the older ones. Medium and/or high MOS treatment also increased the villus height of the small intestine of birds at different ages. Similar results were observed on the ZnB treatment. However, MOS and ZnB affected caecal VFA profile in different ways. MOS increased, or tended to increase, whereas ZnB reduced individual VFA concentrations in the caeca.

Effect of dietary mannanoligosaccharide supplementation on nutrient digestibility, hindgut fermentation, immune response and antioxidant indices in dogs

  • Pawar, Mahesh M.;Pattanaik, Ashok K.;Sinha, Dharmendra K.;Goswami, Tapas K.;Sharma, Kusumakar
    • Journal of Animal Science and Technology
    • /
    • v.59 no.5
    • /
    • pp.11.1-11.7
    • /
    • 2017
  • Background: Use of prebiotics in companion animal nutrition is often considered advantageous over probiotics because of the ease of handling, ability to withstand processing and storage etc. While most of the studies on prebiotic use in dogs have been done with processed food as basal diet, the response in relation to homemade diet feeding is not very well explored. Methods: The study was conducted to evaluate the effects of dietary mannanoligosaccharide (MOS) supplementation on nutrient digestibility, hindgut fermentation, immune response and antioxidant indices in dogs. Ten Spitz pups were divided into two groups: control (CON) with no supplementation, and experimental (MOS) wherein the basal diet was supplemented with MOS at 15 g/kg diet. All dogs were fed on a home-prepared diet for a period of 150 days. The study protocol included a digestion trial, periodic blood collection and analysis for lipid profile and erythrocytic antioxidants. Immune response of the animals was assessed towards the end of the feeding period. Results: Results revealed no significant (P > 0.05) variations in palatability score, intake and apparent digestibility of nutrients between the groups. Faecal score, faeces voided, faecal pH, concentrations of ammonia, lactate and short-chain fatty acids were comparable (P > 0.05) between the two groups. Cell-mediated immune response, assessed as delayed-type of hypersensitivity response, was significantly higher (P < 0.05) in the MOS group. The percent of lymphocyte sub-populations CD4+ and ratio of CD4+:CD8+ were also significantly (P < 0.05) higher in MOS group. The serum IgG levels were similar (P > 0.05) in both the groups. Supplementation of MOS lowered (P < 0.05) serum total- and LDL- cholesterol levels, when compared with the control group. The erythrocytic antioxidant indices were similar (P > 0.05) between the two groups. Conclusions: The results indicated that supplementation of MOS at the rate of 15 g/kg in the diet of dog augmented the cell-mediated immune response and serum lipid profile without any influences on digestibility of nutrients, hindgut fermentation and antioxidants indices.

Comparison of the Chicken Large Intestine to the Large Intestine of Pigs and the Rumen of Cows (닭의 대장을 돼지의 대장이나 소의 제 1위 (Rumen)와 비교 연구)

  • Nahm K.H.
    • Korean Journal of Poultry Science
    • /
    • v.33 no.1
    • /
    • pp.81-95
    • /
    • 2006
  • The large intestine of the chicken differs both anatomically and physiologically from the pig's large intestine and the men of the cow. The chicken's large intestine is less developed than the pig's large intestine or the cow's lumen. This paper summaries these differences. The chicken's large intestine contains a microbiological population similar to that found in the rumen. The chicken's caeca especially contains a large number of microorganisms, but this population varies according to age, fred, maturity, antibiotic use and etc.. Protein is an essential nutrient for the formation of intestinal microvilli. A study showed that the length of the small intestine was 63 % of the total gastrointestinal tract (GIT) length, while caecum was 8.1 %, and the colon and rectum were 4.6 %. The establishment of the microbial population of the small intestine occurs earlier than that of the caeca, but the identity of approximately 90 % of microbial population of the chicken GIT is hon. Recent studies have shown that energy, volatile fatty acid (VFA) and electrolytes that are found in the large intestine may be absorbed to a certain degree. The chicken small intestine is the primary location for digestion with a variety of enzymes being secreted here. Much research is being conducted into the digestion of sucrose thermal oligosaccharide caramel (STOP), fructooligosaccharides (FOS), mannanoligosaccharide (MOS), galactooligosaccharides (GOS) and isomalto-oligosaccharides (IMO) in the chicken caeca and large intestine. Excessive fibre content in the feed has detrimental effects, but proper fibre supplementation to chicken diets can improve the length and capacity of the small intestine.

Functional Agents to Replace Antibiotics for Friendly Environment Pig Diets (환경친화형 양돈사료를 위한 항생제 대체 기능성 물질)

  • 홍의철;김인호
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.4
    • /
    • pp.135-148
    • /
    • 2001
  • Antibiotics supplementation in animal feeds results in bacterial resistance to the antibiotics and residue of the antibiotics in animal products, which can cause serious problems in human health. Therefore, the finding of new substances replacing antibiotics are needed. New substances are egg york antibody, probiotics, organic acid, mannanoligosaccharide(MOS), fructooligosaccharide(FOS), and chitosan etc. Egg york antibody is antibody to obtain from egg york of the chicken injected the specific antigen. Probiotics can prevent the problems of residue of the antibiotics and resistance to the antibiotics. Organic acids ctrl preservation of colostrum inhibit the rottenness and increase the beneficial bacteria. MOS and FOS increase the beneficial bacteria, too. Chitosan is used the immune material to active the anti-bacteria.

  • PDF

Effect of Dietary Supplementation of Procyanidin on Growth Performance and Immune Response in Pigs

  • Park, J.C.;Lee, S.H.;Hong, J.K.;Cho, J.H.;Kim, I.H.;Park, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.131-139
    • /
    • 2014
  • This study was performed to determine the effect of dietary supplementation of procyanidin on growth performance, blood characteristics, and immune function in growing pigs. In experiment 1 (Exp. 1), thirty-two crossbred pigs with an initial BW of $19.2{\pm}0.3$ kg were allocated into 4 treatments for an 8-wk experiment: i) CON (basal diet), ii) MOS 0.1 (basal diet+0.1% mannanoligosaccharide), iii) Pro-1 (basal diet+0.01% procyanidin), and iv) Pro-2 (basal diet+0.02% procyanidin). Pigs fed Pro-1 and Pro-2 diets had greater (p<0.05) gain:feed ratio compared with those fed CON or MOS 0.1 diets. Serum creatinine concentration was less (p<0.05) in Pro-2 treatment than those in CON, MOS 0.1 and Pro-1 treatments. In Exp. 2, twelve pigs (BW $13.4{\pm}1.3$ kg) received basal diet with i) 0 (CON), ii) 0.02% (Pro-0.02%), and iii) 0.04% procyanidin (Pro-0.04%) for 4 wk. Concentration of platelets was lower (p<0.05) in the Pro-0.04% group compared to CON at 24 h after lipopolysaccharide (LPS) challenge. In addition, secretion of cytokines from cultured peripheral blood mononuclear cells (PBMC) in the presence or absence of procyanidin was examined. The levels of interleukin (IL)-$1{\beta}$, IL-6 and tumor necrosis factor (TNF)-${\alpha}$ were lower (p<0.05) in Pro (LPS-stimulated PBMCs+procyanidin) than those in CON (LPS-stimulated PBMCs+PBS) at 4 h after LPS challenge. These data suggest that dietary addition of procyanidin improves feed efficiency and anti-inflammatory cytokines of pigs.

The Role of Immunostimulants in Monogastric Animal and Fish - Review -

  • Sohn, K.S.;Kim, M.K.;Kim, J.D.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1178-1187
    • /
    • 2000
  • Many immunostimulating substances have been developed to improve immunity of domestic animals, although their exact mode of action and effects are not clearly defined, and they are now widely used in feed industry. Bacterial lipopolysaccharides, called endotoxin, in particular may have a profound effect not only on the immune system but also on macrophages of the reticuloendothelial system. Glucans from a variety of yeast cell wall have been shown to stimulate both specific and non-specific immune responses and to increase growth performance in pigs. Recently, there has been great interest in the role of complex carbohydrates in disease prevention and treatment. Mannanoligosaccharide is a glucomannoprotein complex derived from the cell wall of yeast. Generally, it was also known that the deficiencies of some major vitamins (vitamin A, E and C) and minerals (chromium and selenium) lead to impaired immune system and, as a result, immune function is depressed and recovery delayed. On the other hand, many researchers suggested that one possible reason for the superior performance observed in pigs fed plasma protein may be because of the presence of biologically active plasma proteins (e.g., immunoglobulins) which are known to contribute to the health of the starter pig. And, immunoglobulins present in plasma protein have been implicated as contributing to the overall immunocompetence of the newborn pig. Other immunostimulants, lactoferrin and lysozyme, mainly found in milk and egg white, have been known as having bacteriocidal and bacteriolytic effect. When considering practical use of immunostimulants, the concept of using immunostimulants is new to many people and, in most cases, it is poorly understood how and why such compounds act, and how they should be used in practice. Therefore, in order to clarify the reason for discrepancies in results, special attention should be paid to the dose/response relationship of immunostimulants and the duration of the effect.