• Title/Summary/Keyword: Mann-Kendall Trend Analysis

Search Result 100, Processing Time 0.031 seconds

Assessment of extreme precipitation changes on flood damage in Chungcheong region of South Korea

  • Bashir Adelodun;Golden Odey;Qudus Adeyi;Kyung Sook Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.163-163
    • /
    • 2023
  • Flooding has become an increasing event which is one of the major natural disasters responsible for direct economic damage in South Korea. Driven by climate change, precipitation extremes play significant role on the flood damage and its further increase is expected to exacerbate the socioeconomic impact in the country. However, the empirical evidence associating changes in precipitation extremes to the historical flood damage is limited. Thus, there is a need to assess the causal relationship between changes in precipitation extremes and flood damage, especially in agricultural region like Chungcheong region in South Korea. The spatial and temporal changes of precipitation extremes from 10 synoptic stations based on daily precipitation data were analyzed using the ClimPACT2 tool and Mann-Kendall test. The four precipitation extreme indices consisting of consecutive wet days (CWD), number of very heavy precipitation wet days (R30 mm), maximum 1-day precipitation amount (Rx1day), and simple daily precipitation intensity (SDII), which represent changes in intensity, frequency, and duration, respectively, and the time series data on flooded area and flood damage from 1985 to 2020 were used to investigate the causal relationship in the ARDL-ECM framework and pairwise Granger causality analysis. The trend results showed that majority of the precipitation indices indicated positive trends, however, CWD showed no significant changes. ARDL-ECM framework showed that there was a long-run relationship among the variables. Further analysis on the empirical results showed that flooded area and Rx1day have significant positive impacts on the flood damage in both short and long-runs while R30 mm only indicated significant positive impact in the short-run, both in the current period, which implies that an increase in flooded area, Rx1day, and R30 mm will cause an increase in the flood damage. The pairwise Granger analysis showed unidirectional causality from the flooded area, R30 mm, Rx1day, and SDII to flood damage. Thus, these precipitation indices could be useful as indicators of pluvial flood damage in Chungcheong region of South Korea.

  • PDF

Temporal and spatial variation analysis on nutritive salt of Hongze Lake

  • Zhang, Min;Chu, Enguo;Xu, Ming;Guo, Jun;Zhang, Yong
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.19-24
    • /
    • 2015
  • This paper mainly focuses on the research of the monitoring data about the total nitrogen (TN), total phosphorus (TP) of ten monitoring points of Hongze Lake in 28 years. Our study adopts the technical methods such as difference comparison, correlation analysis, Mann-Kendall, etc. to analyze the statistical characteristics, regional differences, and temporal and spatial variation condition of ten monitoring points of Hongze Lake in 1986-2013 as well as the reason for the time and space variation of TN and TP. The results show that the TN and TP of Hongze Lake change dramatically during the period of 1994-2004. In all the monitoring periods, TN and TP of the HZ5, HZ6, HZ7, HZ8 monitoring points in the estuary surrounding the Huaihe River are the highest, which suggests that TN and TP of Hongze Lake should not be ignored for the pollution along the Huaihe River. The TN concentration in the core area is the highest, but that in the development control area is the lowest. In most of the years, TN concentration is higher than 2 mg/L, and the water quality is V class and poor V class water quality in China's Environmental Quality Standards for Surface Water (GB3838-2002). TP concentration of the three areas is basically close, that is lower than 2 mg/L in most of the years, and the water quality is within the V class. The TN and TP concentration of Hongze Lake decreased and intensifying trend of eutrophication is controlled after 2004.

Trend Analysis and Probable Change Point Analysis of Streamflow in Seomjin River Basin, South Korea (비모수 검정 방법을 통한 섬진강 유역 유량의 추세 분석 및 변동점 탐색)

  • Son, Yeon Jin;Kam, Jong Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.398-398
    • /
    • 2021
  • 섬진강은 한국 주요 5대강 중 하나로 유량 변동계수가 가장 크다. 이로 인해, 극심한 가뭄이나 홍수의 발생 확률이 높을 뿐만 아니라, 가뭄에서 홍수 또는 홍수에서 가뭄으로 갑작스러운 극한 수문 기상 변화가 일어날 수 있다. 수자원의 안정적인 확보와 수재해로 인한 피해를 최소화하기 위한 수자원 관리와 장기적 수문분석이 필요하다. 이에 본 연구에서는 섬진강 유역의 수문 관측소(56개)에서 10년 이상 장기 관측된 일유량 자료(1997년~2020년)를 이용하여 비모수 검정 방법을 통한 추세 분석과 변동점을 탐색하였다. 우선, 일유량 관측 자료를 이용하여 누락된 일유량 관측값으로 생겨날 수 있는 불확실성을 배제하기 위해 관측 기간 중 누락된 일유량 관측값들의 월별 비율을 조사하였다. 그리고 월별 일유량 관측값 누락이 없는 관측소들의 월평균 하천 유량 값으로 연평균 하천 유량 값을 계산하였다. 관측 기간 동안 결측된 값이 없는 28개의 관측소를 대상으로 비모수 검정 방법을 통한 연별 추세 분석(Mann-Kendall Test)과 변동점 탐색(Pettitt Test)을 하였다. 연별 추세 분석 경우 28개의 관측소 중 8개의 관측소에서 통계적으로 의미 있는 추세(신뢰도> 99%)가 탐지되었다. 이들 중 3개의 관측소에서는 증가하는 추세를 보였고 5개의 관측소에서 감소하는 추세가 보였다. 7개의 관측소에서는 통계적으로 의미가 있는 변동점도 탐색되었고 그 변동점이 탐색된 연도는 2011년(4개), 2012년(3개)로 나타났다. 계절적 추세 분석에서는 28개의 관측소 중 각각 봄(MAM) 11개, 여름(JJA) 11개, 가을(SON) 9개, 겨울(DJF) 11개 관측소에서 통계적 추세(신뢰도> 99%)가 탐지되었다. 또한 봄 17개, 여름 7개, 가을 18개, 겨울 18개 관측소에서 변동점이 탐색되었고, 그 연도는 관측소마다 달랐다. 이러한 유량의 추세와 변동점의 원인(기후적/인위적 요소)을 더욱 잘 이해하기 위해, 계절별 유량과 강수량의 상관관계 분석이 연구될 필요가 있다. 이러한 장기 수문기후학적 추세와 변동성에 대한 이해는 농업이 중요한 섬진강 유역의 수자원 관리와 기후변화에 선제대응 할 수 있는 기초를 마련할 것이다.

  • PDF

Chemical Characteristics of Shallow Groundwater in an Agricultural District of Hyogyo-ri Area, Chungnam Province (충남 효교리 농업지역 천부지하수의 화학적 특성)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Choi, Eun-Gyeong;Kim, HyunKoo;Kim, MoonSu;Park, Ki-Hoon;Lim, Woo-Ri
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.630-646
    • /
    • 2020
  • In rural areas, nitrate-nitrogen (NO3-N) pollution caused by agricultural activities is a major obstacle to the use of shallow groundwater as domestic water or drinking water. In this study, the water quality characteristics of shallow groundwater in Hyogyo-ri agricultural area of Yesan-gun, Chungcheongnam-do province was studied in connection with land use and chemical composition of soil layer. The average NO3-N concentration in groundwater exceeds the domestic and agricultural standard water qualities of Korea and is caused by anthropogenic sources such as fertilizer, livestock wastewater, and domestic sewage. The groundwater type mainly belongs to Ca(Na)-Cl type, unlike Ca-HCO3 type, a general type of shallow groundwater. The average NO3-N concentration (7.7 mg L-1) in groundwater in rice paddy/other (upstream, ranch, and residential) area is lower than the average concentration (22.8 mg L-1) in farm field area, due to a lower permeability in paddy area than that in farm field area. According to the trend analysis by the Mann-Kendall and Sen tests, the NO3-N concentration in the shallow groundwater shows a very weak decreasing trend with ~0.011 mg L-1yr-1 with indicating almost equilibrium state. Meanwhile, SO42- and HCO3- concentrations display annual decreasing trend by 15.48 and 13.15%, respectively. At a zone of 0 to 5 m below the surface, the average hydraulic conductivity is 1.86×10-5 cm s-1, with a greater value (1.03×10-4cm s-1) in sand layer and a smaller value (2.50×10-8 cm s-1) in silt layer.

Characterizing Changes of Water Quality and Relationships with Environmental Factors in the Selected Korean Reservoirs (우리나라 주요 호소의 수질 변동 경향성 분석 및 유형화)

  • Kwon, Yong-Su;Bae, Mi-Jung;Kim, Jun-Su;Kim, Yong-Jae;Kim, Baik-Ho;Park, Young-Seuk
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.146-159
    • /
    • 2014
  • In this study, we evaluated the temporal changes of water quality in the 90 reservoirs in Korea and the relationships between water quality and their environmental factors in the reservoirs for effective management of reservoirs. The majority of study reservoirs were categorized as the eutrophic state based on Carlson's trophic index. Among 90 reservoirs, more than 55.0% were nutrient-rich based on $TSI_{TP}$ in each month, where more than 50.0% were nutrient-rich based on $TSI_{Chl-a}$ from June to November. Seasonal Mann-Kendall test was used to analyze temporal variation of water quality in the selected 60 reservoirs using monthly data from 2004 to 2008. The results showed that 27 (45.0%) reservoirs showed the improvement of water quality based on TP and Chl-a concentrations, while 14 (23.3%) and 11 (18.3%) reservoirs displayed the degradation of water quality based on TP and Chl-a concentrations, respectively. Meanwhile, a self-organizing map classified the study reservoirs into five groups based on differences of hydrogeomorphology (altitude, catchment area, bank height, lake age, etc.). Physicochemical factors and land use/cover types showed clear differences among groups. Finally, hydrogeomorphology of reservoirs were related to water quality, indicating that the hydrogeomorphological characters strongly affect water quality of reservoirs.

Climate change effect analysis through meteorological data in the Han river basin (기상자료를 통한 한강 유역의 기후 변화 영향 분석)

  • Yang, Jeong-Seok;Kim, Il-Hwan;Kim, Nam-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.352-356
    • /
    • 2012
  • 본 연구는 최근 우리나라 4대강 중 한강의 기후변화로 인한 온도, 상대습도, 강우량의 관측자료를 통해 과거와 최근의 변동특성에 대해서 파악하고자 하였다. 이를 위해 기상청의 관측자료를 활용하였으며 한강의 상, 중, 하류로 나눠서 3개 지점에 대해 선정하였다. 선정 기준은 인위적인 영향을 많이 받는 도시지역을 제외한 도서 지역에 위치한 관측소를 기준으로 선정하였다. 분석을 실시한 항목으로는 최고, 최저, 평균기온 및 상대습도, 연강우량, 일 최고 강우량, 강우 집중률이 있으며 강우 집중률은 강우량에 의한 강우강도의 변동 특성을 파악하기 위해 분석하였다. 과거(~1994)와 최근(1995~2011)의 변동성을 파악하기 위해 각 항목별로 비모수적 검정을 실시하고, 상위 10개를 선정한 자료를 이용하여 분석하였다. 비모수적 검정으로는 Mann-Kendall, Hotelling-Pabst, Sen's Trend Test를 이용하였고, 표준정규변량을 통해 과거와 최근의 경향성을 비교하였다. 연구 지점 중 양평의 평균 기온은 상위 10개 중 9개가 최근 자료에서 선정되었고 경향성의 유의수준도 더 높게 나타났다. 최저 상대습도는 과거에 비해 최근에 더 높은 유의수준의 하강하는 경향성을 가지는 것으로 나타나, 기후변화로 인한 지구온난화가 진행되고 있다는 것을 보여주고 있다. 연강수량은 최근 자료에 상위 8개가 나타났고, 표준정규변량 또한 높은 유의수준을 가지며 증가하는 것으로 나타났다. 일 최고 강수량, 강우집중률 또한 상위 10개 관측자료 중 1995년 이후 7개가 관측되었고, 이는 강우강도가 증가하는 것으로 판단할 수 있다. 상대습도의 경우 평균 및 최소 상대습도에서 2개가 관측 되어 기온은 상승하고 강우는 집중되는 반면 상대습도는 온도의 영향 이외에도 낮아지는 경향을 보여 오난해지는 가운데 건조해지는 경향을 보임을 알 수 있었다.

  • PDF

Analysis on Trends, Periodicities and Frequencies of Korean Drought Using Drought Indices (가뭄지수를 활용한 한반도 가뭄의 경향성, 주기성 및 발생빈도 분석)

  • Lee, Joo-Heon;Seo, Ji-Won;Kim, Chang-Joo
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.75-89
    • /
    • 2012
  • This study attempted to analyze statistical characteristics of historical drought of Korea through trend, periodicity and drought spell analysis by using the drought indices. Standard Precipitation Index (SPI) and Palmer Drought Severity Index (PDSI) were calculated using weather data of 59 weather stations under Korea Meteorological Administration (KMA). As a result of analysis, SP13 and SP16 showed trend of drier spring, drier winter and wetter summer in all basin of Korea. However, SPI12 and PDSI showed different trends with shorter duration drought indices. In case of wavelet transform analysis for drought periodicities, in a band of 1~2 years or below 6 years showed significant spectrum. SP13 showed strongest power spectrum near the band of 1~2 year variance, and SPI12 and PDSI showed 6 years periodicities. The results from drought spell showed that Nakdong River Basin, Geum River Basin and Youngsan River Basin were appeared as severe drought vulnerable area of Korea.

Long-term Trend Analysis of Chlorophyll a and Water Quality in the Yeongsan River (통계적 경향 분석을 통한 영산강의 클로로필 a와 수질 변동 해석)

  • Song, Eun-Sook;Jeon, Song-Mi;Lee, Eo-Jin;Park, Do-Jin;Shin, Yong-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.302-313
    • /
    • 2012
  • Long-term trends (e.g. 1997~2010) of chlorophyll a and water quality properties of the Yeongsan River were analyzed by using water quality monitoring data collected by the water information system, ministry of environment. Nine monitoring stations were selected along the main channel of the river, and parameters of BOD, COD, TN, TP, conductivity, TSS and chlorophyll a were collected for surface water monthly through the monitoring system. Trends of water quality and chlorophyll a were analyzed by the Seasonal Mann-Kendall Test and LOWESS (Locally Weighted Scatter-plot Smoother). The results showed that the water quality parameters, including chlorophyll a, were improved in all stations except Station WC in the most-upper region, where water quality data for the determined parameters were increased, indicating a reduction in water quality. Based on the results from LOWESS analysis, chlorophyll a (algal blooms), BOD and COD recently began to increase after 2007 suggesting that an additional study on the cause of these increases in organic pollution, as well as a better management system for the region are required.

Changes in fish species composition after fishway improvement in Songrim weir, Yeongok stream (연곡천 송림보에서 어도의 개선에 따른 어류 종 조성 변화)

  • Yun, Young-Jin;Kim, Ji Yoon;Kim, Hye-Jin;Bae, Dae-Yeol;Park, Gu Seong;Nam, Chang Dong;Lim, Kyung Hun;Lee, Moon-Yong;Lee, Seong-Yong;Moon, Kyeong-Do;Lee, Eui-Haeng;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.2
    • /
    • pp.195-206
    • /
    • 2021
  • In 2020, South Korea initiated research and development of a longitudinal connectivity evaluation between upstream and downstream based on stream ecosystem health. This study analyzed the migration of upstream and downstream migratory fish species, fish distribution characteristics, trophic guilds, tolerance guilds, and species composition changes from 2015 to 2020 at Songrim weir in Yeongok stream, where the cross-structure of an ice harbor-type fishway for fish movement was recently improved. A total of 5,136 fish, including 36 species, were collected and three major migratory fishes were identified, namely, Tribolodon hakonensis, Plecoglossus altivelis altivelis, and Oncorhynchus keta. According to the comparative analysis before (Pre-I) and after (Post-I) improvement of the fishway, the relative abundance of primary freshwater fish increased in the upstream section, while the number of migratory fishes decreased. The fish species that used the fishway in the Songrim weir were Tribolodon hakonensis (58.4%) and Plecoglossus altivelis altivelis(11.8%). According to the Wilcoxon Signed-Rank Test migratory fish showed a statistically significant difference (p<0.05) in the upstream and downstream, showing a biological improvement effect of the crossstructure. On the other hand, the annual change of migratory fish based on the MannKendall trend test did not significantly increase or decrease (p>0.05). Therefore, in the fish passage improvement project, it is necessary not only for physical, hydrological, and structural tests, but also for pre- and post-biological tests on the use and improvement effect of fishway.

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF