• 제목/요약/키워드: Manipulator Control

검색결과 1,372건 처리시간 0.029초

나노조작기의 수평측 위치제어를 위한 Visual Servoing Loop 구성 (Realization of Visual Servoing Loop for Position Control of a Nano Manipulator)

  • 최진호;박병천;안상정;김달현;유준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.251-252
    • /
    • 2007
  • Nano manipulator is used to manufacture Carbon NanoTube(CNT) tips. Using nano manipulator operator attaches a CNT at the end of Atomic Force Microscopy(AFM) tip, which requires a master mechanic and long manufacture time. Nano manipulator is installed inside Scanning Electron Microscopy (SEM) chamber to observe the operation. This paper presents a control of horizontal axis of nano manipulator via processing SEM image. Edges of AFM tip and CNT are first detected, the position information so obtained is fed to control horizontal axis of nano manipulator. To be specific, visual servoing loop was realized to control the axis more precisely.

  • PDF

산업용 로보트매니플레이터 제어기의 성능향상에 관한 연구 (A Stduy on the Performance Inprovement of Industrial Robot Manipulator Controller)

  • 한성현;이만형
    • 한국정밀공학회지
    • /
    • 제7권4호
    • /
    • pp.85-102
    • /
    • 1990
  • Up to now, most robot control systems are very naive. They consist of a number of independent position-servo loops to control each joint angle separately. Those control systems have constant predefined gains and do not cover the complex dynamic interactions between manipulator joints. As a result, the manipulator is severely limited in range of application, speed of operation and variation of payload. This study proposed a new method to design a robot manipulator controller capable of tracking the reference trajectories of joint angles in a reasonable accuracy to cope with actual situations of varying payload, uncertain parameters. The adaptive model following control method has been used to improve existing robot manipulator controllers. The proposed controller is operated by adjusting its gains based on the response of the manipulator in such a way that the manipulator closely matches the reference model trajectories defined by the designer. The stability of adaptive controller is based on the Second Method of Lyapunov. The coupling among joints and the nonlinearity in the dynamic equation are explicitly considered. The designed manipulator controller shows good tracking performance under various load varia- tion and parameter uncertainties.

  • PDF

적층형 4-BAR 메커니즘을 이용한 평면형 메니퓰레이터 (Planar Manipulator using Stackable 4-BAR Mechanisms)

  • 이호열;최영진
    • 제어로봇시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.456-462
    • /
    • 2010
  • This paper proposes a new planar robotic manipulator using stackable 4-BAR mechanisms for various applications. The proposed manipulator has an advantage that we can separate the driving actuators from a robotic manipulator. By separating actuators from the manipulator, we are able to separate the electrical component such as electrical wiring from the mechanical linkage/joint components in the robotic manipulator. Also, we suggest the kinematic analysis of the proposed manipulator which is composed of input mechanisms, multiple 4-BAR mechanisms and output mechanisms. Finally, we suggest numerical simulations to show the effectiveness of the proposed manipulator.

외란 관측기에 의한 기구학적 여유자유도 매니퓰레이터의 강인한 임피던스 제어 (Robust Impedance Control of Kinematically Redundant Manipulator Based on Disturbance Observer)

  • 오용환;오상록;정완균
    • 제어로봇시스템학회논문지
    • /
    • 제8권11호
    • /
    • pp.963-969
    • /
    • 2002
  • Design method of a robust impedance control is proposed for the kinematically redundant manipulators. To achieve this objective, we first use the momentum feedback disturbance observer(MFDOB) scheme which can handle the nonlinear dynamics of a manipulator in Joint space. An extended task space formulation to describe the behaviors of task and null spaces of redundant manipulator is employed. Using the extended task space formulation and disturbance observer scheme, a robust impedance control method is designed. The performance of the proposed extended impedance controller is verified through experiments with a planar three links direct-drive manipulator.

중력을 이용한 병렬형 머니퓰레이터 구동부의 마찰력 보상 (Friction Force Compensation for Actuators of a Parallel Manipulator Using Gravitational Force)

  • 이세한;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제11권7호
    • /
    • pp.609-614
    • /
    • 2005
  • Parallel manipulators have been used for a variety of applications, including the motion simulators and mechanism for precise machining. Since the ball screws used for linear motion of legs of the Stewart-Gough type parallel manipulator provide wider contact areas than revolute joints, parallel manipulators are usually more affected by frictional forces than serial manipulators. In this research, the method for detecting the frictional forces arising in the parallel manipulator using the gravitational force is proposed. First, the reference trajectories are computed from the dynamic model of the parallel manipulator assuming that it is subject to only the gravitational force without friction. When the parallel manipulator is controlled so that the platform follows the computed reference trajectory, this control force for each leg is equal to the friction force arising in each leg. It is shown that control performance can be improved when the friction compensation based on this information is added to the controller for position control of the moving plate of a parallel manipulator.

Adaptive Tracking Controller Design for Welding Mobile Manipulator with Unknown Parameters

  • 김상봉
    • 한국해양공학회지
    • /
    • 제23권2호
    • /
    • pp.8-17
    • /
    • 2009
  • This paper presents an adaptive tracking control method for a welding mobile manipulator with several unknown parameters such as the last length of the manipulator, the wheel radius and the distance from the center to the wheel. The mobile manipulator consisted of the manipulator and the mobile-platform. Kinematic modelings for the manipulator and the mobile-platform with several unknown parameters were produced. The tracking error vectors for the manipulator and the mobile-platform were defined. These adaptive controllers were designed based on the Lyapunov function to guarantee the stability of the whole system when the mobile manipulator performs a welding task. Update laws were also designed to estimate the unknown dimensional parameters. To implement the designed controllers, a control system integrated with PIC16F877 microprocessors and a TMS320C32 DSP was developed. Simulation and experimental results are presented to show the effectiveness of the proposed controllers.

스튜어트 플랫폼의 견실제어를 위한 슬라이딩 섭동 관측기를 갖는 슬라이딩 모드 제어기 개발 (The Design of Sliding Mode Controller with Sliding Perturbation Observer for a Robust Control of Stewart Platform Manipulator)

  • 유기성;박민규;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제8권8호
    • /
    • pp.639-648
    • /
    • 2002
  • The stewart platform manipulator is a manipulator that has the closed-loop structure with an upper plate end-effector and a base frame. The stewart platform manipulator has the merit of high working accuracy and high stiffness compared with a serial manipulator. However, this is a complex structure, so controllability of the system is not so good. In this paper, we introduce a new robust motion control algorithm using partial state feedback for a class of nonlinear systems in the presence of modelling uncertainties and external disturbances. The major contribution of this work introduces the development and design of robust observer for the state and the perturbation, which is integrated into a variable structure controller(VSC) structure. The combination of controller/observer improves the control performance, because of the robust routine called sliding mode control with sliding perturbation observer(SMCSPO). Simulation and experiment are performed to apply to the manipulator. And their results show a high accuracy and a good performance.

An Output Controller based on dSPACE for Robot Manipulator in Tracking Following Tasks

  • Yang, Yeon-Mo;Park, Dae-Bum;Ahn, Byung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.117-122
    • /
    • 1998
  • The recent developments and studies in the framework of output tracking control in the field of robotics that has been studied in the Control Laboratory, are presented. An output controller based on“Hardware-ln-the-Loop Simulation”(HILS) and“Rapid Control Prototyping”(RCP) concepts is developed using dSPACE. These new concepts are shown to be particularly beneficial for manipulator control tasks. In the Elbow manipulator design, there are two kinds of manipulators, namely the serial-drive type and the parallelogram-drive manipulator, The objective of this research is to model the two Elbow manipulators and to implement the proposed controller for manipulator applications. The control goal is to force the manipulator to follow a given trajectory in the given work space. Output controllers of the two elbow manipulators that are based on the model matching control approach have been implemented in two models that represent the robot equations of motion. To reduce the efforts in evaluating the proposed algorithm, a new system configuration method, based on HILS and RCP tools, was suggested to determine the parameters of the integrated dynamic system.

  • PDF

포크레인용 다관절 매니퓰레이터 어태치먼트 운동학 해석 및 모션제어 (A Study on Motion Control and Kinematics Analysis of Articulated Manipulator Attachment for Excavator)

  • 김희진;김상현;장기원;한성현
    • 한국산업융합학회 논문집
    • /
    • 제22권6호
    • /
    • pp.807-819
    • /
    • 2019
  • In this paper, it is proposed a new approach to motion control and kinematics analysis of articulated manipulator attachment with five degree of freedom for excavator. Unlike the well-established theory for the control of linear systems, there is little general control theory relatively for a robust control of nonlinear systems. The control technique is essential for providing a stable and robust performance for application of articulated manipulator control. The proposed control algorithm is one of robust control methods based on error informations of the position and velocity error informations using stability analysis of dynamic model. Through simulation test, the proposed control scheme is illustrated to be a efficient control technique for real-time control.

신경 회로망을 이용한 단일 링크의 유연한 매니퓰레이터의 위치제어 (Position control of single-link manipulator using neural network)

  • 이효종;최영길;전홍태;장태규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.18-23
    • /
    • 1990
  • In this paper, the dynamic modeling and a tip-position controller of a single-link flexible manipulator are developed. To design the controller of a flexible manipulator, at first, it is required to obtain the accurate dynamic model of manipulator describing both rigid motion and flexible vibration. For this purpose, FEM(Finite Element Method) and Lagrange approach are utilized to obtain the dynamic model. After obtaining the dynamic model of a single-link manipulator, a controller which computes the input torque to perform the desired trajectory is developed using neural network.

  • PDF