• 제목/요약/키워드: Manipulator Control

검색결과 1,372건 처리시간 0.028초

모바일-매니퓰레이터 구조 로봇시스템의 안정한 모션제어에 관한연구 (A Study on Stable Motion Control of Mobile-Manipulators Robot System)

  • 박문열;황원준;박인만;강언욱
    • 한국산업융합학회 논문집
    • /
    • 제17권4호
    • /
    • pp.217-226
    • /
    • 2014
  • Since the world has changed to a society of 21st century high-tech industries, the modern people have become reluctant to work in a difficult and dirty environment. Therefore, unmanned technologies through robots are being demanded. Now days, effects such as voice, control, obstacle avoidance are being suggested, and especially, voice recognition technique that enables convenient interaction between human and machines is very important. In this study, in order to conduct study on the stable motion control of the robot system that has mobile-manipulator structure and is voice command-based, kinetic interpretation and dynamic modeling of two-armed manipulator and three-wheel mobile robot were conducted. In addition, autonomous driving of three-wheel mobile robot and motion control system of two-armed manipulator were designed, and combined robot control through voice command was conducted. For the performance experiment method, driving control and simulation mock experiment of manipulator that has two-armed structure was conducted, and for experiment of combined robot motion control which is voice command-based, through driving control, motion control of two-armed manipulator, and combined control based on voice command, experiment on stable motion control of voice command-based robot system that has mobile-manipulator structure was verified.

Modeling, Identification and Control of a Redundant Planar 2-DOF Parallel Manipulator

  • Zhang, Yao-Xin;Cong, Shuang;Shang, Wei-Wei;Li, Ze-Xiang;Jiang, Shi-Long
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권5호
    • /
    • pp.559-569
    • /
    • 2007
  • In this paper, the dynamic controller design problem of a redundant planar 2-dof parallel manipulator is studied. Using the Euler-Lagrange equation, we formulate the dynamic model of the parallel manipulator in the joint space and propose an augmented PD controller with forward dynamic compensation for the parallel manipulator. By formulating the controller in the joint space, we eliminate the complex computation of the Jacobian matrix of joint angles with end-effector coordinate. So with less computation, our controller is easier to implement, and a shorter sampling period can be achieved, which makes the controller more suitable for high-speed motion control. Furthermore, with the combination of static friction model and viscous friction model, the active joint friction of the parallel manipulator is studied and compensated in the controller. Based on the dynamic parameters of the parallel manipulator evaluated by direct measurement and identification, motion control experiments are implemented. With the experiments, the validity of the dynamic model is proved and the performance of the controller is evaluated. Experiment results show that, with forward dynamic compensation, the augmented PD controller can improve the tracking performance of the parallel manipulator over the simple PD controller.

로보트 매니퓰레이터의 비집중 적응제어에 관한 연구 (A study on decentralized adaptive control of robot manipulator)

  • 이상철;박성기;정찬수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.183-187
    • /
    • 1989
  • This paper presents on approach to the position control of a robot manipulator by using a decentralized adaptive control scheme. The large scale system is regarded as the system which consists of many subsystems having interconnection. In each subsystem, a local control system is composed by feedforward and feedback component, one computes the nominal torque from the Newton-Euler equation, the other computes the perturbation equation which reduce the position error of the manipulator along the nominal trajectory. A computer simulation studies was conducted to evaluate and compare the performances of the proposed manipulator control scheme with those of the PD control and centralized control schemes.

  • PDF

고무인공근 로보트 매니퓨레이터의 위치 및 힘 제어에 관한 연구 (A Study on Position and Force Control of A Robot Manipulator with Artificial Rubber Muscle)

  • 진상호;게이고 와타나베;이석규
    • 한국정밀공학회지
    • /
    • 제12권1호
    • /
    • pp.97-103
    • /
    • 1995
  • This paper describes position and force hybrid control for a robot manipulator with artificial rubber muscle actuators. The controller using two control laws such as PID control and fuzzy logic control methods is designed. This paper concludes to show the effectiveness of the proposed controller by some experiments for a two-link manipulator.

  • PDF

슬라이딩 모우드 제어에 기초한 유연한 2링크 조작기의 진동제어 (Vibration Control of a Flexible Two-link Manipulator based on the Sliding Mode Control)

  • 채승훈;양현석;박영필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.511-516
    • /
    • 2000
  • In order to not only perform as a extreme model under the severe operating condition but also acquire more diverse and advanced control capability utilizing high compliance, active vibration control of a flexible 2-link robot manipulator are investigated. Multi variable-structured frequency shaped optimal sliding mode is proposed for the flexible robot manipulator like control system, whose control variables, an angular motion of joint and vibration of flexible link, have to be controlled simultaneously by one control torque at a driving joint. The control system is divided into two subsystems, a control input related subsystem and an added subsystem. The proposed sliding mode, composed of multi control variables, makes optimized relation between subsystems and a individual control input, thus, the sliding mode controller can compensate whole dynamics of each subsystems simultaneously. And the possibility and effectiveness are verified by vibration control of a manipulator having two flexible links. Simulation and experiment results show that the proposed control scheme achieves the purpose effectively.

  • PDF

영상표식 기반의 로봇 매니퓰레이터 끝점 위치 제어 (Tip Position Control of a Robot Manipulator using Visual Markers)

  • 임세준;임현;이영삼
    • 제어로봇시스템학회논문지
    • /
    • 제16권9호
    • /
    • pp.883-890
    • /
    • 2010
  • This paper proposes tip position control system which uses a visual marker to determine the tip position of a robot manipulator. The main idea of this paper is to introduce visual marker for the tracking control of a robot manipulator. Existing researches utilize stationary markers to get pattern information from them. Unlike existing researches, we introduce visual markers to get the coordinates of them in addition to their pattern information. Markers need not be stationary and the extracted coordinate of markers are used as a reference trajectory for the tracking control of a robot manipulator. To build the proposed control scheme, we first obtain intrinsic parameters through camera calibration and evaluate their validity. Secondly, we present a procedure to obtain the relative coordinate of a visual marker with respect to a camera. Thirdly, we derive the equation for the kinematics of the SCORBOTER 4pc manipulator which we use for control of manipulator. Also, we provide a flow diagram of entire visual marker tracking system. The feasibility of the proposed scheme will be demonstrated through real experiments.

반력모멘트 추정기를 이용한 단일 링크 유연 조작기의 진동제어 (Vibration Control of a Single-Link Flexible Manipulator Using Reaction Moment Estimator)

  • 신호철;한상수;김승호
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.169-175
    • /
    • 2005
  • In this paper, a novel vibration control scheme for a single-link flexible manipulator system without using a vibration feedback sensor is proposed. In order to achieve the vibration information of the flexible link, a reaction moment estimator based on the dynamic characteristics of the flexible manipulator is proposed. While the manipulator is maneuvering the reaction moment is reciprocally acting on the flexible link and the hub inertia due to the vibration of the link. A sliding mode controller based on the equivalent rigid body dynamics corresponding to the proposed flexible manipulator is then augmented with the reaction moment estimator to realize a decentralized control system. The reaction moment estimator is implemented via the first order low pass filter. The performance of the proposed control scheme is verified by computer simulation and experiment.

Impedance Control of Flexible Base Mobile Manipulator Using Singular Perturbation Method and Sliding Mode Control Law

  • Salehi, Mahdi;Vossoughi, Gholamreza
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권5호
    • /
    • pp.677-688
    • /
    • 2008
  • In this paper, the general problem of impedance control for a robotic manipulator with a moving flexible base is addressed. Impedance control imposes a relation between force and displacement at the contact point with the environment. The concept of impedance control of flexible base mobile manipulator is rather new and is being considered for first time using singular perturbation and new sliding mode control methods by authors. Initially slow and fast dynamics of robot are decoupled using singular perturbation method. Slow dynamics represents the dynamics of the manipulator with rigid base. Fast dynamics is the equivalent effect of the flexibility in the base. Then, using sliding mode control method, an impedance control law is derived for the slow dynamics. The asymptotic stability of the overall system is guaranteed using a combined control law comprising the impedance control law and a feedback control law for the fast dynamics. As first time, base flexibility was analyzed accurately in this paper for flexible base moving manipulator (FBMM). General dynamic decoupling, whole system stability guarantee and new composed robust control method were proposed. This proposed Sliding Mode Impedance Control Method (SMIC) was simulated for two FBMM models. First model is a simple FBMM composed of a 2 DOFs planar manipulator and a single DOF moving base with flexibility in between. Second FBMM model is a complete advanced 10 DOF FBMM composed of a 4 DOF manipulator and a 6 DOF moving base with flexibility. This controller provides desired position/force control accurately with satisfactory damped vibrations especially at the point of contact. This is the first time that SMIC was addressed for FBMM.

하이브리드 위치/힘 제어방법에 의한 로봇 매니퓰레이터의 제어에 관한 연구 (A Study on Control of Robot Manipulator by Hybrid Position / Force Control)

  • 김현숙;길진수;한상완;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.308-310
    • /
    • 1994
  • Position control for robot manipulator may not suffice when any contacts are made between the end-effector and various environments. Therefore interaction forces must be controlled in tasks performed by robot manipulator. In general, there are two types of force control for robot manipulator. One is a stiffness control and the other is a hybrid position/force control. Stiffness control is that environment can be modeled as a spring and utilizes the desired normal force to determine the desired normal position. Hybrid position/force control, however, can be used for robot manipulator to track position and force trajectories simultaneously. This paper will compare the result of the hybrid position/force control method with that of the stiffness control method.

  • PDF

Development of a Teleoperated Manipulator System for Remote Handling of Spent Fuel Bundles

  • Ahn Sung Ho;Jin Jae Hyun;Yoon Ji Sup
    • Nuclear Engineering and Technology
    • /
    • 제35권3호
    • /
    • pp.214-225
    • /
    • 2003
  • A teleoperated manipulator system has been developed for remote handling of the spent fuel bundles. A heavy-duty power manipulator with high reduction ratio joints is used for the slave manipulator in the developed system since the handling tasks of the spent fuel bundles need power. Also, the universal type master manipulator, which has force reflecting capability, is used for precise remote manipulation. The power manipulators so frequently occur the control input saturation that the precise control performances are not achieved due to the windup phenomenon. An advanced bilateral control scheme compensating for the saturation is applied to the teleoperated manipulator system. The validity of the developed system is verified by the grid cutting and fuel transportation tasks from the mockup spent fuel bundle.