• 제목/요약/키워드: Maneuvering Target Tracking System

검색결과 62건 처리시간 0.024초

IMM Method Using Kalman Filter with Fuzzy Gain

  • 노선영;주영훈;박진배
    • 한국지능시스템학회논문지
    • /
    • 제16권2호
    • /
    • pp.234-239
    • /
    • 2006
  • In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, the unknown acceleration input for each sub-model is determined by mismatches between the modelled target dynamics and the actual target dynamics. After a acceleration input is detected, the state estimates for each sub-filter are modified. To modify the accurate estimation, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model(AIMM) method and input estimation (IE) method through computer simulations.

능, 수동센서를 이용한 수중환경에서의 표적추적필터 구조 연구 (A Study on Target Tracking Filter Architecture in Underwater Environment using Active and Passive Sensors)

  • 임영택;서태일
    • 한국군사과학기술학회지
    • /
    • 제18권5호
    • /
    • pp.517-524
    • /
    • 2015
  • In this paper, we propose a new target tracking filter architecture using active and passive sensors in underwater environment. A passive sensor for target tracking needs a bearing measurement of target. And target tracking filter for using passive sensor has the observability problem. On the other hand, an active sensor does not have the problem associated with system observability problem because an active sensor uses bearing and range measurement. In this paper, the tracking filter algorithm that could be used in the active and passive sensor system is proposed to analyze maneuvering target and to improve target tracking performance. The proposed tracking filter algorithm is tested by a series of computer simulation runs and the results are analyzed and compared with existing algorithm.

지능형 추적 알고리즘 (Intelligent Tracking Algorithm for Maneuvering Target)

  • 노선영;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.499-501
    • /
    • 2005
  • When the target maneuver occurs, the estimate of the standard Kalman filter is biased and its performance may be seriously degraded. To solve this problem, this paper proposes a new intelligent estimation algorithm for a maneuvering target. This algorithm is to estimate the unknown target maneuver by a fuzzy system using the relation between the filter residual and its variation. The detected acceleration input is regarded as an additive process noise. To optimize the employed fuzzy system, the genetic algorithm (GA) is utilized. And then, the modified filter is corrected by the new update equation method using the fuzzy system. The tracking performance of the proposed method is compared with those of an interacting multiple model (IMM).

  • PDF

Design of Target Tracking System Using a New Intelligent Algorithm

  • Noh, Sun-Young;Joo, Young-Hoon;Park, Jin-Bae
    • 한국지능시스템학회논문지
    • /
    • 제15권6호
    • /
    • pp.748-753
    • /
    • 2005
  • When the maneuver occurs, the performance of the standard Kalman filter has been degraded because mismatches between the modeled target dynamics and the actual target dynamics. To solve this problem, the unknown acceleration is determined by using the fuzzy logic based on genetic algorithm(GA) method. This algorithm is the method to estimate the increment of acceleration by a fuzzy system using th relation between maneuver filler residual and non-maneuvering one. To optimize this system, a GA is utilized. And then, the modified filter is corrected by the new update equation method which is a fuzzy system using the relation between the filter residual and its variation. To shows the feasibility of the suggested method with only one filter, the computer simulations system are provided, this method is compared with multiple model method.

기동 표적 추적을 위한 유전알고리즘 기반 퍼지 모델링 기법 (GA based fuzzy modeling method for tracking a maneuvering target)

  • 노선영;이범직;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2702-2704
    • /
    • 2005
  • This paper proposes the genetic algorithm (GA)-based fuzzy modeling method for intelligent tracking of a maneuvering target. When the maneuvering to turn or taking evasive action, the performance of the standard Kalman filter has been degraded because residual between the modeled target dynamics and the actual target dynamics. To solve this problem, the state prediction error is minimized by the intelligent estimation method. Then, this filter is corrected by measurement corrections which is the fuzzy system. The performance of the proposed method is compared with those of the input estimation(IE) technique through computer simulation.

  • PDF

신경망의 자료 융합 능력을 이용한 기동 표적 추적 시스템의 설계 (Design of Maneuvering Target Tracking System Using Data Fusion Capability of Neural Networks)

  • 김행구;진승희;윤태성;박진배;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.552-554
    • /
    • 1998
  • In target tracking problems the fixed gain Kalman filter is primarily used to predict a target state vector. This filter, however, has a poor precision for maneuvering targets while it has a good performance for non-maneuvering targets. To overcome the problem this paper proposes the system which estimates the acceleration with neural networks using the input estimation technique. The ability to efficiently fuse information of different forms is one of the major capabilities of trained multi-layer neural networks. The primary motivation for employing neural networks in these applications comes from the efficiency with which more features can be utilized as inputs for estimating target maneuvers. The parallel processing capability of a properly trained neural network can permit fast processing of features to yield correct acceleration estimates. The features used as inputs can be extracted from the combinations of innovation data and heading changes, and for this we set the two dimensional model. The properly trained neural network system outputs the acceleration estimates and compensates for the primary Kalman filter. Finally the proposed system shows the optimum performance.

  • PDF

FCM 기반 추정 가속도 보상을 이용한 기동표적 추적기법 설계 (Designing Tracking Method using Compensating Acceleration with FCM for Maneuvering Target)

  • 손현승;박진배;주영훈
    • 전자공학회논문지SC
    • /
    • 제49권3호
    • /
    • pp.82-89
    • /
    • 2012
  • 본 논문에서는 기동표적의 위치오차에서 구해지는 가속도를 보상하는 지능형 추적 알고리즘을 소개한다. 관측치와 예상위치와의 차이값은 가속도와 순수잡음으로 분리된다. 이때, 최적의 가속도를 얻기 위하여 퍼지 c-means 클러스터링 기법과 예상명중위치기법이 이용되었다. 분리된 가속도와 잡음에 대한 퍼지 이론의 멤버쉽 함수를 결정되고, 이에 따라 기동표적의 기동특성이 인식되어진다. 분리된 가속도와 잡음은 추적 알고리즘 내에서 추정된 오차값을 보상하는데 이용된다. 표적의 추정값을 계산하는 일련의 과정중 필터링 과정은 기동표적의 비선형성을 선형성으로 인식하게 된다. 이것은 필터가 위치오차에서 가속도를 추출하여 남겨진 잡음만을 인식하기 때문이다. 필터링 과정 이후 추출된 가속도를 보상하여 표적의 추정값을 구해낸다. 제안된 기법은 퍼지 시스템의 멤버쉽 함수에서 파라미터를 조절하여 적응성과 강인성을 향상 시켰다. 제안된 시스템의 효율성을 극대화하기 위하여 제안된 기법을 다중모델 구조로 형성한다. 또한 제안된 기법은 온라인 시스템으로서의 수행이 가능하다. 마지막으로 제안된 알고리즘의 효율성을 보여주기 위하여 몇 가지 예를 추가하였다.

기동 표적 추적을 위한 퍼지 IMM 알고리즘에 관한 연구 (A Study on Fuzzy Interacting Multiple Model Algorithm for Maneuvering Target Tracking)

  • 김현식;김진석;황수복
    • 한국군사과학기술학회지
    • /
    • 제7권4호
    • /
    • pp.5-12
    • /
    • 2004
  • The tracking algorithm based on the interacting multiple model(IMM) requires a considerable number of sub-models for the various maneuvering targets in order to have a good performance. But it is not feasible to use the nm algorithm in the real system because of the computational burden. Therefore, we need an algorithm which requires less computing resources while maintaining a good performance. In this paper, we propose a fuzzy interacting multiple model algorithm(FIMMA) for the tracking of maneuvering targets, which uses a minimal number of sub-models by considering the maneuvering properties and adjusts the mode transition probabilities by using the mode probability as a fuzzy input. In order to verify the performance of FIMMA, the developed algorithm is applied to the tracking of i borne targets. Simulation results show that the FIMMA is very effective in the tracking of maneuvering targets.

레이더 측정 잡음 추정을 통한 기동 표적 추적 성능 향상 (Performance Improvement of Maneuvering Target Tracking with Radar Measurement Noise Estimation)

  • 전대근;은연주;고현;염찬홍
    • 한국항공우주학회지
    • /
    • 제39권1호
    • /
    • pp.25-32
    • /
    • 2011
  • 항공관제용 감시자료 처리시스템에 의한 기동 표적 추적에 있어서 레이더의 측정 잡음 분산은 상태 추정기의 입력으로서, 추적 정확도에 영향을 주는 주요한 요소 중 하나이다. 본 연구에서는 레이더의 측정 잡음 분산을 상수가 아닌 변수로 지정하여, 다중 IMM 필터의 우도함수를 통해 매 시간 측정 잡음 분산을 실시간으로 추정하는 알고리즘을 제시하였다. Monte Carlo 시뮬레이션 결과 측정 잡음 분산 값을 실제 값 대비 5% 이내 수준으로 예측함을 확인하였고, 이를 통해 기동 표적 추적 성능을 향상시킬 수 있음을 확인하였다.

Design of Fuzzy IMM Algorithm based on Basis Sub-models and Time-varying Mode Transition Probabilities

  • Kim Hyun-Sik;Chun Seung-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권5호
    • /
    • pp.559-566
    • /
    • 2006
  • In the real system application, the interacting multiple model (IMM) based algorithm requires less computing resources as well as a good performance with respect to the various target maneuverings. And it further requires an easy design procedure in terms of its structures and parameters. To solve these problems, a fuzzy interacting multiple model (FIMM) algorithm, which is based on the basis sub-models defined by considering the maneuvering property and the time-varying mode transition probabilities designed by using the mode probabilities as inputs of a fuzzy decision maker, is proposed. To verify the performance of the proposed algorithm, airborne target tracking is performed. Simulation results show that the FIMM algorithm solves all problems in the real system application of the IMM based algorithm.