• 제목/요약/키워드: Malware Detection System

검색결과 118건 처리시간 0.02초

Intelligent Approach for Android Malware Detection

  • Abdulla, Shubair;Altaher, Altyeb
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.2964-2983
    • /
    • 2015
  • As the Android operating system has become a key target for malware authors, Android protection has become a thriving research area. Beside the proved importance of system permissions for malware analysis, there is a lot of overlapping in permissions between malware apps and goodware apps. The exploitation of them effectively in malware detection is still an open issue. In this paper, to investigate the feasibility of neuro-fuzzy techniques to Android protection based on system permissions, we introduce a self-adaptive neuro-fuzzy inference system to classify the Android apps into malware and goodware. According to the framework introduced, the most significant permissions that characterize optimally malware apps are identified using Information Gain Ratio method and encapsulated into patterns of features. The patterns of features data is used to train and test the system using stratified cross-validation methodologies. The experiments conducted conclude that the proposed classifier can be effective in Android protection. The results also underline that the neuro-fuzzy techniques are feasible to employ in the field.

A Secure Encryption-Based Malware Detection System

  • Lin, Zhaowen;Xiao, Fei;Sun, Yi;Ma, Yan;Xing, Cong-Cong;Huang, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1799-1818
    • /
    • 2018
  • Malware detections continue to be a challenging task as attackers may be aware of the rules used in malware detection mechanisms and constantly generate new breeds of malware to evade the current malware detection mechanisms. Consequently, novel and innovated malware detection techniques need to be investigated to deal with this circumstance. In this paper, we propose a new secure malware detection system in which API call fragments are used to recognize potential malware instances, and these API call fragments together with the homomorphic encryption technique are used to construct a privacy-preserving Naive Bayes classifier (PP-NBC). Experimental results demonstrate that the proposed PP-NBC can successfully classify instances of malware with a hit-rate as high as 94.93%.

ANNs on Co-occurrence Matrices for Mobile Malware Detection

  • Xiao, Xi;Wang, Zhenlong;Li, Qi;Li, Qing;Jiang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2736-2754
    • /
    • 2015
  • Android dominates the mobile operating system market, which stimulates the rapid spread of mobile malware. It is quite challenging to detect mobile malware. System call sequence analysis is widely used to identify malware. However, the malware detection accuracy of existing approaches is not satisfactory since they do not consider correlation of system calls in the sequence. In this paper, we propose a new scheme called Artificial Neural Networks (ANNs) on Co-occurrence Matrices Droid (ANNCMDroid), using co-occurrence matrices to mine correlation of system calls. Our key observation is that correlation of system calls is significantly different between malware and benign software, which can be accurately expressed by co-occurrence matrices, and ANNs can effectively identify anomaly in the co-occurrence matrices. Thus at first we calculate co-occurrence matrices from the system call sequences and then convert them into vectors. Finally, these vectors are fed into ANN to detect malware. We demonstrate the effectiveness of ANNCMDroid by real experiments. Experimental results show that only 4 applications among 594 evaluated benign applications are falsely detected as malware, and only 18 applications among 614 evaluated malicious applications are not detected. As a result, ANNCMDroid achieved an F-Score of 0.981878, which is much higher than other methods.

정적 분석 기반 기계학습 기법을 활용한 악성코드 식별 시스템 연구 (A Study on Malware Identification System Using Static Analysis Based Machine Learning Technique)

  • 김수정;하지희;오수현;이태진
    • 정보보호학회논문지
    • /
    • 제29권4호
    • /
    • pp.775-784
    • /
    • 2019
  • 신규 및 변종 악성코드의 발생으로 모바일, IoT, windows, mac 등 여러 환경에서 악성코드 침해 공격이 지속적으로 증가하고 있으며, 시그니처 기반 탐지의 대응만으로는 악성코드 탐지에 한계가 존재한다. 또한, 난독화, 패킹, Anti-VM 기법의 적용으로 분석 성능이 저하되고 있는 실정이다. 이에 유사성 해시 기반의 패턴 탐지 기술과 패킹에 따른 파일 분류 후의 정적 분석 적용으로 기계학습 기반 악성코드 식별이 가능한 시스템을 제안한다. 이는 기존에 알려진 악성코드의 식별에 강한 패턴 기반 탐지와 신규 및 변종 악성코드 탐지에 유리한 기계학습 기반 식별 기술을 모두 활용하여 보다 효율적인 탐지가 가능하다. 본 연구 결과물은 정보보호 R&D 데이터 챌린지 2018 대회의 AI기반 악성코드 탐지 트랙에서 제공하는 정상파일과 악성코드를 대상으로 95.79% 이상의 탐지정확도를 도출하여 분석 성능을 확인하였다. 향후 지속적인 연구를 통해 패킹된 파일의 특성에 맞는 feature vector와 탐지기법을 추가 적용하여 탐지 성능을 높이는 시스템 구축이 가능할 것으로 기대한다.

A Chi-Square-Based Decision for Real-Time Malware Detection Using PE-File Features

  • Belaoued, Mohamed;Mazouzi, Smaine
    • Journal of Information Processing Systems
    • /
    • 제12권4호
    • /
    • pp.644-660
    • /
    • 2016
  • The real-time detection of malware remains an open issue, since most of the existing approaches for malware categorization focus on improving the accuracy rather than the detection time. Therefore, finding a proper balance between these two characteristics is very important, especially for such sensitive systems. In this paper, we present a fast portable executable (PE) malware detection system, which is based on the analysis of the set of Application Programming Interfaces (APIs) called by a program and some technical PE features (TPFs). We used an efficient feature selection method, which first selects the most relevant APIs and TPFs using the chi-square ($KHI^2$) measure, and then the Phi (${\varphi}$) coefficient was used to classify the features in different subsets, based on their relevance. We evaluated our method using different classifiers trained on different combinations of feature subsets. We obtained very satisfying results with more than 98% accuracy. Our system is adequate for real-time detection since it is able to categorize a file (Malware or Benign) in 0.09 seconds.

Android Malware Detection using Machine Learning Techniques KNN-SVM, DBN and GRU

  • Sk Heena Kauser;V.Maria Anu
    • International Journal of Computer Science & Network Security
    • /
    • 제23권7호
    • /
    • pp.202-209
    • /
    • 2023
  • Android malware is now on the rise, because of the rising interest in the Android operating system. Machine learning models may be used to classify unknown Android malware utilizing characteristics gathered from the dynamic and static analysis of an Android applications. Anti-virus software simply searches for the signs of the virus instance in a specific programme to detect it while scanning. Anti-virus software that competes with it keeps these in large databases and examines each file for all existing virus and malware signatures. The proposed model aims to provide a machine learning method that depend on the malware detection method for Android inability to detect malware apps and improve phone users' security and privacy. This system tracks numerous permission-based characteristics and events collected from Android apps and analyses them using a classifier model to determine whether the program is good ware or malware. This method used the machine learning techniques KNN-SVM, DBN, and GRU in which help to find the accuracy which gives the different values like KNN gives 87.20 percents accuracy, SVM gives 91.40 accuracy, Naive Bayes gives 85.10 and DBN-GRU Gives 97.90. Furthermore, in this paper, we simply employ standard machine learning techniques; but, in future work, we will attempt to improve those machine learning algorithms in order to develop a better detection algorithm.

A Risk Classification Based Approach for Android Malware Detection

  • Ye, Yilin;Wu, Lifa;Hong, Zheng;Huang, Kangyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.959-981
    • /
    • 2017
  • Existing Android malware detection approaches mostly have concentrated on superficial features such as requested or used permissions, which can't reflect the essential differences between benign apps and malware. In this paper, we propose a quantitative calculation model of application risks based on the key observation that the essential differences between benign apps and malware actually lie in the way how permissions are used, or rather the way how their corresponding permission methods are used. Specifically, we employ a fine-grained analysis on Android application risks. We firstly classify application risks into five specific categories and then introduce comprehensive risk, which is computed based on the former five, to describe the overall risk of an application. Given that users' risk preference and risk-bearing ability are naturally fuzzy, we design and implement a fuzzy logic system to calculate the comprehensive risk. On the basis of the quantitative calculation model, we propose a risk classification based approach for Android malware detection. The experiments show that our approach can achieve high accuracy with a low false positive rate using the RandomForest algorithm.

Malware Detection with Directed Cyclic Graph and Weight Merging

  • Li, Shanxi;Zhou, Qingguo;Wei, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권9호
    • /
    • pp.3258-3273
    • /
    • 2021
  • Malware is a severe threat to the computing system and there's a long history of the battle between malware detection and anti-detection. Most traditional detection methods are based on static analysis with signature matching and dynamic analysis methods that are focused on sensitive behaviors. However, the usual detections have only limited effect when meeting the development of malware, so that the manual update for feature sets is essential. Besides, most of these methods match target samples with the usual feature database, which ignored the characteristics of the sample itself. In this paper, we propose a new malware detection method that could combine the features of a single sample and the general features of malware. Firstly, a structure of Directed Cyclic Graph (DCG) is adopted to extract features from samples. Then the sensitivity of each API call is computed with Markov Chain. Afterward, the graph is merged with the chain to get the final features. Finally, the detectors based on machine learning or deep learning are devised for identification. To evaluate the effect and robustness of our approach, several experiments were adopted. The results showed that the proposed method had a good performance in most tests, and the approach also had stability with the development and growth of malware.

Automatic malware variant generation framework using Disassembly and Code Modification

  • Lee, Jong-Lark;Won, Il-Yong
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권11호
    • /
    • pp.131-138
    • /
    • 2020
  • 멀웨어는 일반적으로 다른 사용자의 컴퓨터시스템에 침입하여 개발자가 의도하는 악의적인 행위를 일으키는 컴퓨터프로그램으로 인식되지만 사이버 공간에서는 적대국을 공격하기 위한 사이버 무기로써 사용되기도 한다. 사이버 무기로서 멀웨어가 갖춰야 할 가장 중요한 요소는 상대방의 탐지시스템에 의해 탐지되기 이전에 의도한 목적을 달성하여야 한다는 것인데, 하나의 멀웨어를 상대방의 탐지 시스템을 피하도록 제작하는 데에는 많은 시간과 전문성이 요구된다. 우리는 DCM 기법을 사용하여, 바이너리코드 형태의 멀웨어를 입력하면 변종 멀웨어를 자동으로 생성해 주는 프레임워크를 제안한다. 이 프레임워크 안에서 샘플 멀웨어가 자동으로 변종 멀웨어로 변환되도록 구현하였고, 시그니쳐 기반의 멀웨어 탐지시스템에서는 이 변종 멀웨어가 탐지되지 않는 것을 확인하였다.

Proposing a New Approach for Detecting Malware Based on the Event Analysis Technique

  • Vu Ngoc Son
    • International Journal of Computer Science & Network Security
    • /
    • 제23권12호
    • /
    • pp.107-114
    • /
    • 2023
  • The attack technique by the malware distribution form is a dangerous, difficult to detect and prevent attack method. Current malware detection studies and proposals are often based on two main methods: using sign sets and analyzing abnormal behaviors using machine learning or deep learning techniques. This paper will propose a method to detect malware on Endpoints based on Event IDs using deep learning. Event IDs are behaviors of malware tracked and collected on Endpoints' operating system kernel. The malware detection proposal based on Event IDs is a new research approach that has not been studied and proposed much. To achieve this purpose, this paper proposes to combine different data mining methods and deep learning algorithms. The data mining process is presented in detail in section 2 of the paper.